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1. Introduction

1.1. Motivation

Machine learning is used more and more to make de-
cisions which can have a large impact on people’s lives,
ranging from deciding whether someone will get a job
to whether they will be investigated by the police. Given
this, just as it is important to ensure that a traditional
job application process or police investigation is free of
discrimination based on race or gender, it is also important
to ensure that a machine learning algorithm is also free of
similar discrimination.

One might naively assume that a machine learning al-
gorithm cannot discriminate racially or otherwise, since it
is simply a mathematical algorithm. This is true in a trivial
sense, but misleading: while an algorithm itself may not
discriminate, it can reflect or even magnify discrimination
in the data it is trained on. This has the potential to create
social feedback loops, where data based on a discriminatory
source (i.e. criminal justice data, where racial minorities
are disproportionately the subject of police attention [1]])
is used to feed an algorithm which will perpetuate this
discrimination.

1.2. Related Work

Given this and similar concerns, awareness about po-
tential discrimination in machine learning has grown over
the past years. Fairness, Accountability, and Transparency
in Machine Learning'|is an organization that holds a yearly
workshop of the same name to explore this topic.

Discrimination-aware classification is concerned with
the construction and use of classifiers learned from discrim-
inatory or biased data, and was first introduced by Pedreschi
et al. [6]. Kamiran et al. [4] studied a large sample of data
on Dutch youth, and found that a naive classifier resulted
in astronomically higher false positive rates for members of
minority groups than for non-minorities. They presented a
number of different algorithms for counteracting this effect,
based on changing the training data or the objective function.

1.3. Experimental Setup

In our work, we used a dataset (described fully below)
with detailed life-history information about several thousand
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United States youth, including criminal behavior. To emulate
a hypothetical policing application, we set the following
prediction task: Given all the data on an individual up
through their 24th year, predict whether they would be
incarcerated in their 25th year.

We decided to begin by implementing a traditional non-
discrimination-aware classifier (simple Naive Bayes). Then,
we analyzed the behavior of the classifier on two of the race
categories used in the dataset (Black and Non-Black/Non-
Hispanic). Finally, we implemented several different ap-
proaches to try to make the classifier more fair.

2. Data and Features

2.1. National Longitudinal Survey of Youth 1997

The data used in this study is derived from the National
Longitudinal Survey of Youth 1997 (NLSY97) [3|] pro-
vided by the United State Department of Justice. NLSY97
collected age-based calendar year variables on arrests and
incarcerations, self-reported criminal activity, substance use,
demographic variables and relevant variables from other
domains on individuals each year for up to 12 years (ages
14-25).

NLSY97 was created to be representative of United
States youth in 1997 who were born between the years of
1980 and 1984. The NLSY97 cohort comprises two inde-
pendent probability samples: a cross-sectional sample and an
oversample of Black and/or Hispanic or Latino respondents.
The cohort was selected using these two samples to meet the
survey design requirement of providing sufficient numbers
of Black and Hispanic or Latino respondents for statistical
analysis.

In this study, a dataset was created from the 2,977
individuals in a subsample of NLSY97 who were asked
self-reported illegal activity questions in the calendar year
that they turned 20 and beyond (not necessarily the same
calendar year for every person in the study). We chose this
subsample of NLSY97 because people not in this subsample
were missing answers to these self-reported illegal activity
questions.

2.2. Features

The dataset contained a total of 350 features, including:

¢ Demographic data (race, gender, etc.)
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¢ Health information

o Information about family relations

o Socioeconomic status

e Income and employment information for each year

« Educational information

o Self-reported information on various types of crimes
for each year

e Arrests, convictions, and incarcerations for each
year.

2.2.1. Preprocessing. We began by removing individuals
who passed away before the end of the study or did not
report data in the final year of the study.

Next, we found that while some of the data were cate-
gorical (e.g.: race/ethnicity, sex), other data were not (e.g.:
household income, poverty ratio, test scores). Therefore,
non-categorical data were bucketed into five buckets of equal
size whose ranges were determined by the minimum and
maximum values of the attribute across all individuals in the
dataset. We also replaced all missing values in the dataset
with the constant, -1.

After cleaning, the dataset contained 2,814 individuals.
The racial breakdown of these individuals is 30.2% Black,
21.3% Hispanic/Latino, 1.1% Mixed (Non-Hispanic), 47.4%
Non-Black/Non-Hispanic. 6.2% of the individuals were in-
carcerated in the year they turned 25.

3. Analyzing a Simple Model

We trained Naive Bayes on the training set, consisting
of 70% of the data (N = 1969). We then ran prediction on
the training set and on a test set consisting of the remaining
30% of the data (N = 845). As an initial check to see
whether or not our algorithm was overfitting, we compared
precision and recall on the training set versus the test set. On
the training set, precision was 26.5% and recall was 77.2%.
On the test set, precision was 28.4% and recall was 70.0%.
The similarity between these numbers gave us confidence
that the Naive Bayes model was not overfitting the dataE]

We then began examining the performance of the al-
gorithm on subjects of different races. To begin with, we
looked at the overall rate of positives (i.e. instances where
the subject was incarcerated during their 25th calendar year).
The table below shows the rate of positive values in the data,
and in the predictions made by the algorithm.

Black | Non-Black/Non-Hispanic
Ground-truth positive | 15% 4%
Predicted positive 27% 12%

Overall, Black subjects are substantially more likely to
be incarcerated than Non-Black/Non-Hispanic subjects, and
the algorithm’s predictions are in line with this. Furthermore,
the algorithm predicts positive at a rate 2-3 times higher than
the ground truth, both overall and in every race category.

2. Which we expected, since Naive Bayes is a relatively high bias (in
the ML sense), low variance model.

Black | Non-Black/Non-Hispanic
Precision 0.400 0.1837
Recall 0.737 0.600
False Positive | 0.195 0.102
False Negative | 0.263 0.400

The table above shows a variety of measures we com-
puted to better understand the performance of the algorithm
on different races. Focusing on comparing Black to Non-
Black/Non-Hispanic performance, we found a very surpris-
ing result here: Both precision and recall were substantially
higher for Black subjects, with the difference being partic-
ularly large for precision. In other words, a Black predicted
“criminal’ was more than twice as likely to be an actual
“criminal” as a Non-Black/Non-Hispanic predicted criminal.

Looking at the data differently, however, showed a
seemingly contradictory result: the false positive rate{ﬂ for
Black subjects was also significantly higher than for Non-
Black/Non-Hispanics. In other words, an “innocent” (i.e.
ground truth negative) Black subject was twice as likely to
be falsely accused by the algorithm as an “innocent” Non-

Black/Non-Hispanic subject.

At first, these two findings seem mutually contradictory.
The first seems to suggest the algorithm is less likely to
falsely accuse a Black subject, the second that it is more
likely. The answer to this paradox lies in the different base
rates between the two groups. The fraction of true positives
is greater for Blacks than for Non-Black/Non-Hispanics,
and the number of predicted positives is also greater, but
not by as much. So, while the number of false positives
is low compared to the number of predicted positives (high
precision), it is still higher when compared to the population
of true negatives.

We think there is an interesting and important lesson
here. Take the example of NYPD’s much criticized “stop and
frisk” policy. Critics say that the stop and frisk has a huge
disparate impact on minorities, leading to huge numbers
of innocent Black and Hispanic people being stopped, and
disproportionately arrested for minor crimes (like possession
of small amounts of marijuana). Meanwhile, defenderf]
claim that stops only disproportionately impact minorities
because they mirror actual patterns of violent crime in New
York City, and that the minority suspects they stop are not
more likely to be innocent than the non-minority suspects.
Our results, if applied more broadly, suggest that both can
be correct in a mathematical sense: When a police advocate
says stop and frisk is not biased, they are saying that the
“algorithm™ has high precision. When a minority citizen or
advocate says stop and frisk is biased, they are saying it
has a high false positive rate. As we have shown, it is quite
possible, and even natural, for both to be the case.

3. That is, someone the algorithm thought likely to be incarcerated in
their 25th year, based on knowledge about previous years.

4. Le. the percentage of ground truth negative examples for which the
algorithm predicted positive.

5. Like former mayor Michael Bloomberg in this editorial: [2]



3.1. False Positives as a Fairness Criterion

Given this analysis, we decided it may be fruitful to
look at the false positive rate as an alternative criterion
for fairness, as opposed to just looking at the prediction
rate. Two reasons this may be a good fairness criterion are
that it corresponds to a real world phenomenon which is
universally regarded as unfair, and that it is less likely to
be criticized as “reverse discrimination” than an algorithm
which simply equalizes the prediction rates between differ-
ent classes.

In the rest of this paper, we will compare various
methods which attempt to decrease the false positive rate
on the minority class to match that on the majority class.
Specifically, we will look at methods which change the
algorithm’s behavior only for the minority class, leaving it
unchanged for the majority class. Since it is trivially easy to
decrease the false positive rate on an algorithm by simply
making it predict positive less often, we will benchmark our
various approaches by the false negative ratesﬁ] they incur. In
other words, we will consider an algorithm to be better than
another if it decreases the false positive rate for minorities
to the same leve as the majority class at the expense of
a smaller increase in the false negative rate than the other
algorithm.

4. Threshold-Based Fairness

We first implemented the method described by Kamiran
et al. [4] that performed best on their dataset, where the
decision boundary is moved for the minority class (Black).
Still using Naive Bayes, we moved the decision threshold
back and forth to generate a variety of different models,
and then picked the one which created a false positive rate
(on the training set) for Black subjects closest to that for
the majority class (Non-Black/Non-Hispanic). This gave the
following results:

Black | Non-Black/Non-Hispanic
False Positive | 0.0930 0.102
False Negative | 0.526 0.400

So, the false positive rate was cut in half, but at the
expense of doubling the false negative rate. Also see Figures
and [Tb] which show the false positive and false negative
rates for different thresholds, on the training and test sets.
These graphs show that the threshold method generalized
fairly well, with performance on the test set being very close
to performance on the training set.

5. Feature Selection-Based Fairness

We next implemented a method of our own devising,
which worked by feature selection in the form of stepwise
regression. Forward feature selection builds a feature set
by greedily adding the best feature not already in the set at
each step until there are no more features to add. Similarly,

6. Le. percentage of ground-truth positives predicted negative.

backward feature elimination removes the worst feature in
the set at each step until there are no more features in the
set. We wanted to create a feature selection (or elimination)
criterion which would attempt to reach a target false positive
rate, while keeping false negatives as low as possible.

We recognized that this was similar to a constrained
optimization problem, so we decided to use a penalty
method to convert the constrained optimization problem
into an unconstrained optimization problem by adding a
penalty term equal to the square of the deviation from the
desired constraint. This gave us the following cost function:

FNg +~(FPg — FPr)?

Where FFNp and F' Pp are the false negative and false
positive rates of the predictions on Black subjects, F'Pr is
the target false positive rate, and ~ is a hyper parameter:
larger v means more weight is placed on reaching the
desired false positive goal.

For all of the results below we used the following
scheme: train Naive Bayes on the training dataset, and then
predict on the test set, using only the selected features
if predicting on a Black subject, but using all features
if predicting on a Non-Black/Non-Hispanic subject. This
doesn’t require training separate models, since in Naive
Bayes the learned weights for each feature are independent
of the other features. We chose this approach because,
like the thresholding method, this algorithm is tweaked
only for the minority class; thus, the false positive rate on
Non-Black/Non-Hispanic subjects will not shift during the
optimization process.

5.1. Choosing ~

We wanted to prioritize minimizing the difference be-
tween F'Pp and F'Pr when they are not “close enough”.

We reasoned that the difference between false positive
rates can be at most 0.1 (10%) for the false positive rates to
still be deemed “close”. So when F'Pp and F' Pr differ by
0.1 or more, v(FPg — FPr)? should be greater than any
value that F'Np can take on. By definition, no error rate can
be greater than 1. Therefore, v must satisfy the following
inequality:

7(0.1)2 > 1

v > 100

We also reasoned that if the difference between false
positive rates is 0.001 (0.1%) or less, we should care an
order of magnitude less about making the false positive
rates closer than we do about minimizing F'Npg. Since 0.1
is a respectable false negative rate (and 0.01 is an order of
magnitude less than 0.1), this sentiment is captured by the
following inequality:

7(0.001)% < 0.01
v < 10000

Therefore, we ran the algorithms described below with
the following values of ~: 100, 300, 1000, 3000, 10000. We



selected the feature subset that minimized the cost function
for each of the runs (values of 7). Then, we computed a
normalized cost function to select the best overall feature
subset, where our normalized cost function was the cost
function using the largest value of ~y that we tried (10000):

FNpg + 10000(F Pg — FPr)?

5.2. Selecting The Best Feature Subset

First, we trained a Naive Bayes model on our training
set and used the model to predict on the cross-validation
setm Next, we used the predictions to calculate our F'Pr,
the false positive rate of Non-Black/Non-Hispanic subjects
in the cross-validation set.

At each step of our stepwise regression algorithms, for
each feature subset considered, we trained a Naive Bayes
model on the training set using only the given feature
subset. Then, we evaluated each of the models by using it
to predict on the Black subjects in our cross-validation set
and calculate F'Np and F' Pg for our cost function. Next,
we added (or removed) the feature that minimized our cost
function and moved on to the next step.

Finally, after all of the steps were completed, we chose
the feature subset that minimized the cost function over all
steps as the best feature subset.

5.3. Forward Feature Selection

At each step in our forward feature selection algorithm,
we add the feature f to the current feature set F which
satisfies the following equation (on the cross-validation set):

arg min (FNB(]-‘ Uf)+y(FPp(FUf) - FPT)Q)

This approach generated the false positive and false
negative values shown in Figures |Ic| and We chose the
feature subset that had the lowest cost when evaluated on
the cross-validation set. In the event that multiple feature
subsets had the same cost, we chose the smallest subset. This
gave the following results on the test set (using the origi-
nal feature set for prediction on Non-Black/Non-Hispanic
subjects):

Black | Non-Black/Non-Hispanic
False Positive | 0.0744 0.102
False Negative | 0.421 0.400

5.4. Backward Feature Elimination

Naturally, we also implemented backward feature elim-
ination on the same objective, at each step removing the
feature f from F satisfying:

argmin (FNp(F\ f) +1(FP5(F\ J) = FPr)’)

7. For the feature-selection section of this paper, we divided the non-
test data into a training set (70% of the original training set) and a cross-
validation set (30% of the original training set).

This generated the false positive and false negative val-
ues shown in Figures andAgain, we chose the feature
subset that had the lowest cost when evaluated on the cross-
validation set. However, this time, we picked the largest
subset size (fewest features removed) if multiple feature
subsets had the same cost. This gave the following results on
the test set (again using the original feature set for prediction
on Non-Black/Non-Hispanic subjects):

Black | Non-Black/Non-Hispanic
False Positive | 0.0698 0.102
False Negative | 0.368 0.400

As the graphs on the next page show, both forward fea-
ture selection and backward feature elimination led to a sub-
stantial degree of overfitting: false negative rates especially
were far lower on the cross-validation set (performance on
which was used to select the feature subsets) than on the
test set. Fortunately, the performance on the test set was still
superior to thresholding for both kinds of feature selection,
so the technique did in fact generalize in a meaningful way.

One method we used to limit the degree of overfitting
from feature selection was to choose the first encountered
feature subset size which met the false positive criterion (i.e.
the smallest subset size for forward feature selection, and
the largest subset size for backward). As discussed in [3],
feature selection can lead to overfitting by the sheer number
of different possible feature selections it can explore, and so
terminating the algorithm as early as possible can reduce the
degree of overfitting. This can be seen clearly in Figures
and on the cross-validation set, our chosen point (denoted
by the green line) is at the rightmost edge of a series of
feature subsets with equivalent performance on the test set.
However, we can see that the chosen subset size had much
better generalization error than the smaller subset sizes. A
similar but less dramatic effect can be seen on the forward
feature selection plots.

6. Conclusion and Future Work

We examined the performance of Naive Bayes in a
criminal justice application on a real-world dataset, and
found that it produced substantially disparate false positive
rates for different racial groups. Then, we applied several
techniques to try to equalize the false positive rate: a sim-
ple thresholding technique, and then both forward feature
selection and backward feature elimination.

We found that although feature selection introduced
more overfitting than thresholding, it also produced substan-
tially better performance on the test set, as measured by the
false negative rate for Black subjects once the false positive
rate had been equalized.

In the future, we would like to extend this work to
see if similar feature selection methods are effective when
used with more sophisticated algorithms, such as boosting
or SVMs.

8. Note that these graphs should be read from right to left, since the
algorithm was taking features away rather than adding them.
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Figure 1: False positive and false negative rates (on Black subjects) for various algorithms.
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