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1 Introduction and background

Everyday, hundreds of tasks are performed to maintain and
manage commercial real estate. High level metrics such
as property performance and profitability are influenced by
these ground-level actions, however a quantitative under-
standing of their relationship has historically been difficult
because of the lack of robust data. In commercial real es-
tate, data sets — to the extent that they exist — are typically
highly focused on a particular aspect of the business, and
there is no normalization of key data elements among dis-
parate data sets. Boxer Properties, an integrated commer-
cial real estate owner and management company, has uti-
lized a unique data management software (Stemmons Enter-
prise: http://stemmons.com) to record and manage their
day-to-day operations in a consistent manner. With this
software, each ground-level actions is referred to as a “case”,
cases are grouped within “case types”, and the structure of
each case is highly normalized. Applying machine learning
techniques to this data set has the potential to readily quan-
tify relationships, connect seemingly unrelated concepts and
measures, shift tasks towards automation, and take a more
data-driven approach to management.

In industry, machine learning approaches have been use-
ful for tasks such as understanding and clustering customer
interactions [8], identifying unexpected deviations in cus-
tomer purchases [1], and marketing [12]. However, the
success of these techniques is highly dependent on effec-
tive strategy and robust databases [10]. Presently, prop-
erty valuation used for decision making is mostly done in
a subjective manner, where experience, intuition and ba-
sic regression techniques are leveraged [6]. In some cases
machine learning techniques have been used to aid and au-
tomate mass appraisal of properties, where input features
typically include cadastral data, property transaction his-
tory and and general building information such as year of
building construction, area, number of storeys and others
[9, 2]. However, day-to-day operations are not commonly
incorporated into property appraisal models.

The overall goal of this project was to explore how ma-
chine learning techniques, widely applied to other types of
data, could be used to understand, aggregate and make pre-
dictions with the significant amount of building operations
data provided by Boxer Property, spanning multiple facets
of property management. We started off by exploring the
data within single case types. In this paper, we describe
our procedure as it applies to the most prevalent case type,
property work orders (maintenance tasks assigned to build-
ing staff). In Section 2.3 we describe pre-processing of this
data, in Section 3.1 we show that we can make simple pre-
dictions via supervised learning within the case type, and
in Section 3.2 we perform unsupervised learning to visu-
alize and aggregate the information in a meaningful way.
With our methods, we were able to identify clear clusters in
the data, treat these clusters as emergent features, and use
them for aggregating data within a single case type such

that it was suitable for inclusion in a predictive model in-
volving multiple case types. We chose to predict monthly
property performance, specifically monthly Net Operating
Income (NOI) per square foot. To do this, we used emer-
gent features combined with building specific descriptors
(average rent, gross area, year of acquisition. etc.) to build
a model described in Section 4. Given these features, we
used panel analysis, decision trees and boosting as poten-
tial models to predict if monthly NOI would be above or be-
low a certain threshold value. The goal was to see whether
the emergent time-variant features and property descriptors
could be used in tandem to predict financial property per-
formance, and investigate different models for exploring this
relationship.

2 Data summary and pre-processing

The data was provided to us in table format (SQL) by
Boxer Property (http://www.boxerproperty.com). Build-
ing specific information, 2 years worth of monthly property
financial performance data, and data on property day-to-
day functioning and maintenance spanned numerous data
sets (each data set contains a distinct “case type”), which
had to be pre-processed and aggregated. For the property
specific data, we could create features without significant
pre-processing.

Table 1: Case list summary for 8 properties.

Case Type No. Cases
Property work order 12,345
Tenant request 9,426
Customer survey 1,797
follow-up

Tenant ledger 1,677
change

Check-ins 1,303
Property project 1,034
Other, ex: Help desk, Move out prep. 5,459

2.1 Property specific data

Each property had a set of quantitative and categorical fea-
tures. Categorical features consisted of: Market, Owner,
Management Status, Bank associated with the property,
Unit condition and Paint/carpet condition. Quantita-
tive features comsisted of: Unit layout rating, Property
gross area, Available leasing area, Property take over year,
Months since takeover, Year built, Year last renovated,
Number of floors, Starting rate, Occupancy rate, Electric
expenses, Parking space per sq. ft, and Monthly Rent. In
Section 4 we refer to these quantities as “time-invariant” fea-
tures because they do not fluctuate on a month-to-month
basis within the time scale we considered. In addition, for
each of the properties “time-variant” features were created
by methodology described in Section 3.2. Together both
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time variant features from previous month and time invari-
ant features were used to predict the next month’s NOI.

2.2 Case list raw data

The bulk of Boxer Property’s data set is a detailed record
of “cases”, ground-level data where each case corresponds
to someone at the company taking some action to remedy
an issue, either preemptively or by request. Due to com-
putational power limitations, the scope of our class project
was limited to 8 properties in Dallas, Texas, under 5% of
the total data set. However, our techniques are designed
to be extensible to a larger data set. The case data used
for this project is summarized in the Table 1, where each
category of information is referred to as a “case type”. In
order to get access this data, both of us have signed a NDA
(https://sites.stanford.edu/ico/ndas).

2.3 Pre-processing case data

As a baseline method for aggregation, for each case type in
Table 1, we can construct model features without significant
processing based on the number of case types opened, ac-
tive, and closed at a given property for a given month. For
the two largest case types, property work orders and tenant
requests, we performed additional analysis, in part to gain
additional insights to the data set. In this section, we will
explain this process for work orders. A nearly identical pro-
cess was performed for tenant requests, but is not discussed
in depth here due to limited space. Figure 1 shows a sample

Partial Sample Work Order

“dallas”  “building~general”

“3-medium”  “employeelD1”

“employeelD2”

tme closed: 2014-04-14 15:38:57.193 S
Created by: cmploycelD1 “rusti”  “pump”  “deterior”
loyeel? “support”  “rd”  “floor”

“room”
“resolv”

“electr”
“pleas™

“issu”

Description: Rusty pump and deteriorated support in the 3rd
floor Eloctrical Room. Please rosolve the ssuc.

Figure 1: Selected fields of a sample work order are shown on
the left. Each work order is converted to a “bag-of-words" prior
to analysis. Here we show 5 out of 456 fields.

property work order, a collection of largely categorical data.
Some of the data fields are selected from a drop down menu
where a set number of words, phrases or identification num-
bers are selection options, we call these “fixed” fields. The
work orders also contain an option to freely type a descrip-
tion. We extract the text from this field, remove numbers,
symbols and punctuation, separate each word, remove stop
words, and apply the Porter stemming algorithm [11]. We
call the set of words created from this process “free” fields.
Then, we concatenate the free fields and the fixed fields to
turn each work order in to a “bag-of-words” model where
many of the tokens from the fixed fields are not real words,
instead they are phrases such as 2-major or employeeID1.
A simple alternative to the “bag-of-words” approach would
be to use “one-hot” encoding to represent the categorical
data in the fixed fields. However, since many of the fixed
field words could only appear in one or two places, switch-
ing to one-hot encoding did not enhance the results seen in
either Section 3.1 or Section 3.2 and required a much larger
data matrix because many fixed fields have 10s — 100s of
input options. In addition, a representation of the free fields
that acknowledges that different words are highly correlated
was not implemented, though it could lead to improvements
in the future. The result of creating a “bag-of-words” model

was that each work order could be represented as a feature
vector, and all work orders could be represented as a feature
matrix X with dimensions (no. work orders) x (no. tokens)
where there are 3,358 tokens.

3 Applying machine learning techniques within a
single case type

3.1 Prediction of Work Order duration

Given this representation of data described in Section 2.3,
we could not resist using it to try and make some simple
predictions. Specifically, we decided to try and predict work
order duration (date closed - date created) using matrix X.
The median work order duration is 10 days, the mode is
0 days and the mean is 28 days. We attempted a binary
classification, treating a positive result as a work order du-
ration that exceeds 10 days. We implemented a naive Bayes
multinomial event model with Laplace smoothing, a support
vector machine (SVM) with a linear kernel and k-nearest
neighbor (KNN) based prediction. Each algorithm was eval-
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Figure 2: The upper left learning curve compares NB, SVM and
KNN. The upper right learning curve compares the performance
of naive Bayes with free fields only, fixed fields only, and both
fields combined for both test and training error. For these curves,
we used 500 test samples. The lower left curve is used to choose
k with a Euclidian distance metric, and the lower right curve
is used to choose k with the Jaccard coefficient. With 100 test
samples and 1,000 training samples, the best performance is
attained with & = 4, combined fields and the Euclidian distance.

uated by creating a learning curve with a variable number
of training samples and 500 test samples, shown in Fig. 2,
and summarized in Table 2. The errors reported here corre-
spond to the highest number of training samples tested for
each method. For naive Bayes, the tokens most strongly as-
sociated with positive results were employeeID2, present,
employeeID5, employeeID6, and employeeID7. The to-
kens most strongly associated with negative results (short-
duration) were employeeID8, preventative maintenance,
employeeID9, employeeID10, and telesforom. In addi-
tion, we performed naive Bayes with fixed tokens only, free
tokens only, and all tokens, and saw that the best perfor-
mance was achieved when all tokens were used, learning
curve shown in Fig. 2. The performance of SVM was com-
paratively poor, both in computation time (= 3 orders of
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magnitude larger than naive Bayes for this sample size) and
in error rates.

Table 2: Classification of work order duration

Precision | Recall | Test Error
NB 0.82 0.84 0.17
SVM 0.77 0.45 0.24
KNN 0.90 0.74 0.174

Finally, to make a prediction with KNN, we had to first
select k by choosing the value with the lowest test error,
and choose a distance metric for computing the distance
between two points. For our distance metric, we tried both
searching for the points with the smallest Euclidian dis-
tance d = ||V — 2(?)|| and the smallest Jaccard coeffi-
cient, J = (tM - @) /(|[tM]]2 4 [|[t]2 + tO) . +2)) where
t; = 1{z; > 0}. Among many potential metrics of text
similarity, the Jaccard coefficient has been shown to per-
form well [7]. The results of this small parameter study are
shown in Fig. 2. For KNN with £ = 4 and a Euclidian dis-
tance metric, corresponding to the best performance in the
selection step, performance on the test data in the learning
curve is summarized in Fig. 2 and Table 2. Because of the
large computational time associated with KNN for high di-
mensional data (> 4 orders of magnitude than naive Bayes)
we stopped the analysis as soon as the learning curve flat-
tened. If Fig. 2, we also plot both the test and training
error for the naive Bayes method. The fact that they con-
verge indicates that the imperfect performance of the model
is most likely due to bias. It is possible that relying on the
naive Bayes assumption, that each feature element is condi-
tionally independent given the duration category, is leading
to this bias. KNN performed was nearly identical to naive
Bayes, but was by far the slowest algorithm. If the main
objective of this paper was to predict work order duration
we would conduct this analysis in more detail by perform-
ing cross validation, investigating more potential methods
to overcome the bias present in our current best performing
method, and attempt to predict work order duration as a
continuous variable.
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Figure 3: Left: the gray dots plot work orders in principal
component space when PCA is applied to all work orders at once.
Red, green, and blue dots show the results of applying PCA
to three randomly selected sub-samples of 3,000 points each.
Right: Histograms of the variance explained by each principal
component, and histograms of the weights of different tokens
within a principal component.

3.2 Clustering within a case type and emergent
feature construction

In order to search for patterns within a given case type, we
began by attempting k-means clustering of the work order

data. However, the initial attempt went poorly because of
high dimensionality and lack of significant evidence of dis-
tinct clusters even existing. Therefore, we turn to principal
component analysis (PCA) to first visualize the data and
look for patterns.  Given matrix X, PCA computes the
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Figure 4: When the first two principal components of the work
order data are plotted (12, 345 work orders in total), several clus-
ters emerge. In the left plot, work order duration is superim-
posed on the clusters. In the right plot, the six clusters divided
by k-means clustering are shown.
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Figure 5: When the first three principal components of the
tenant request data (9,426 tenant requests in total) are plotted,
several very tightly packed clusters emerge. The left plot shows
the seven clusters divided by k-means clustering and the right
plot shows the variability between locations of tenant requests
in principal component space from two different buildings.

eigenvectors associated with the largest eigenvalues of co-
variance matrix ¥ = =X X7 We did this using the MAT-
LAB built in function pca. Figure 3 shows a histogram of
how much variance is explained by each principal compo-
nent, and histograms of the weights of each token in the
first two principal component. We chose to cluster and vi-
sualize work order data with only the first two components
because they explain a significantly higher amount of the
variance in the data than the other components (outliers
in the red histogram in Fig. 3, and because visualizing the
data with three principal components did not significantly
change the cluster behavior. When we attempted PCA us-
ing either “fixed” or “free” fields only the clusters were not
nearly as well defined. Therefore, we focus only on analy-
sis using both. For tenant requests, shown in Fig. 5, we
found that the data clustered best in the first three princi-
pal components. For the first principal component of prop-
erty work orders, the highest magnitude weights (outliers
in the blue histogram in Fig. 3) were resolv, issu, pleas,
2-major, building general, employeeID1, and 3-medium.
For the second principal component, the highest magnitude
weights (outliers in the green histogram in Fig. 3) were
building general, 2-major, employeeID2, new, pleas,
issu, resolv, other, employeeID9. However, the weights
of unlisted tokens were not trivial. The orientations of prin-
cipal component space is also consistent even when different



random samples of work orders, illustrated in Fig. 3, are
chosen for analysis.

In the left plot in Fig. 4, color indicating work order du-
ration is superimposed on the data in principal component
space. From this visualization, we can easily identify clus-
ters that take much longer to complete. We then grouped
the data into six clusters using a K-means clustering algo-
rithm with a Euclidian distance metric. Given these de-
fined clusters, we note that the shortest duration cluster
has a mean time to completion of 4 days while the longest
duration cluster has a mean duration of 85 days. For each
cluster identified using the procedure in Sec. 3.2, we defined
the number of clusters of each type per property per month
that were “opened” “active” and “closed”. The remainder of
the cases were simply grouped by case type. In the sub-
sequent section, we refer to these case driven features as
“time-variant” features.

4 Prediction of property performance using mul-
tiple case types

The general motivation behind building a model for predict-
ing monthly property performance is that the property per-
formance and building operations data from a given month
could be used to anticipate the following month’s NOI. For
this analysis, we had access to monthly NOI data from Jan-
uary 2015 to November 2016. In this section, when we re-
port our final test error, it is for the split where the training
set was taken as January 2015 to July 2016, and the test
set as August 2016 to November 2016 i.e. the most recent
available data. While no time series analysis was performed,
the idea of this model was to predict NOI in the future.
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Figure 6: Upper Left: distribution of monthly NOI per square
foot for 8 properties. Upper Right: actual NOI data and fit-
ted model from panel analysis for one of the properties. Lower
Left: predicated and actual NOI values for August-December
2016 based of the previous month’s operations and performance
data. Lower Right: predicted value assignment to 2 class confu-
sion matrix, with "profitable" and "non-profitable" classification
labels

4.1 Methods

Panel Analysis: Linear panel analysis is a regression com-
monly used in econometrics and social sciences. Panel or
longitudinal data refers to data that is collected over time

for multiple units. In our case this was data for 8 proper-
ties aggregated on a monthly basis, with input features that
included both time variant and invariant inputs. To han-
dle the time invariant features, "random effects" model was
used as in Equation 1, where o and 3 are model coefficients
to be estimated, x;; is a vector of features for property 4
at time ¢, p; is the individual error term (assumed to be
uncorrelated with regressors), and ¢;; is the idiosynchratic
error independent of both regressors and individual error.

(1)

The model coeflicients are obtained by using general
least squares (GLS) regression [3]. Panel analysis was
implemented using the plm R package. The model revealed
several significant coefficients (p-value < 0.05) from the
emergent features: number of active "type 1" tenant
requests (negative coeff.), number of closed "type 5" tenant
requests (positive coeff.), number of tenant check-ins
(positive coefl.), number of other types of cases active
(positive coeff.) and closed (negative coeff.), and number
of active tenant ledger changes (negative coeff.). The root-
mean-square-error (RMSE) of the model on the training
data was 0.145, while on the test data it was 0.692, which
means the model has limited predictive accuracy or utility.
The results of the fitted model are visualized in Figure
6. Since the rest of the learning models used categorical
labeling "profitable" (4) and "not profitable" (-), the panel
analysis results were converted to classification results as
shown in Figure 6. The threshold for classification was
chosen as the median of all NOI data (0.67 dollars per ft?).

Yir = a+ BT + i +

Decision Trees: Classification decision trees were consid-
ered next, as they are relatively interpretable and are able to
capture interactions between different features. Using this
learning method allowed us to see which time-variant fea-
tures constructed using PCA and K-means clustering would
show up in our prediction of monthly NOI. In decision trees,
each of the splits is made to maximize impurity reduction
(as per Equation 2), where I(A) is the impurity of node A,
p(A) is the probability of a future observation of node A,
and Ay, and Ag are two sons of the split of node A [13].

Al =p(A)I(A) —p(AL)I(AL) — p(AR)I(AR)  (2)
The analysis was done using the R package rpart, where
Gini index was used as the impurity function. In order to
prevent overfitting, the size of the tree was chosen based
the complexity parameter (cp) that yielded the lowest cross
validation error with 10-fold cross validation (cp=0.041),
as shown in Figure 7. The final decision tree with opti-
mal pruning is also shown in Fig. 7. Figure 7 shows that
while the first two splits are made on time invariant fea-
tures (previous month’s NOI and year build) further splits
are made using the emergent time variant features, in par-
ticular, splits are made on work order clusters and tenant
request cluster, which is similar to the panel analysis re-
sults. For example, work order type 2, which corresponds
to the shortest duration work orders, shows up as a split.
The error results are presented in Table 3.

Boosting: The boosting algorithm, which uses decision
stumps as weak learners, was applied to the training data
via the ada R package. The algorithm uses Stochastic Gra-
dient Boosting on exponential loss function shown in Equa-
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Figure 7: Upper Left: relative cross validation error for different
number of splits, where the optimal cp=0.041. Upper Right:
final pruned decision tree for prediction of monthly NOI. Lower
Left: training and test (cross-validation) errors as a function
of the number of iterations. Lower Right: variable importance
scores.

tion 3, with regularization parameter v [4].

L(6) = e v @) (3)
The model was tuned using hold-out cross validation
(70/30). The regularization parameter was chosen as v =
0.5, a value that corresponded to the lowest cross-validation
error. The number of iterations was chosen to be 18, since it
was the number of iterations required to achieve the lowest
error on the cross-validation test set (Figure 7). The vari-
able importance, as defined by Hastie et al. [5], in shown in
Fig. 7. Consistent with the results from the other model-
ing methods, boosting showed that while the first four most
important features are the time invariant property descrip-
tors, the subsequent features include emergent time variant
features.

4.2 Result summary

Table 3 summarizes the errors from 144 training samples
and 40 tests samples, as well as precision and recall. We
can see that on the test data, boosting performed marginally
better than decision trees, while panel analysis did not per-
form well on test set predictions. Boosting is also the pre-
ferred method when considering precision and recall. Al-
though these results are highly preliminary, it is possible
that boosting is performing well because the presence of
each different case type is a form of NOI predicting “weak
learner” which suits the theory behind boosting. However,
since we have so many features and so few training exam-
ples, and our training error is significantly lower than our
test error, we suspect that our results are hurt by and largely
indicate high variance. In the future, implementing these
models with 1 — 2 orders of magnitude more data is how we
would choose to remedy this issue.

Table 3: Summary of the results for three methods used - pre-
cision and recall are calculated on the test data.

Training | Test Precision | Recall
Error Error
Panel Analysis 14.6% 50% 100% 20%
Decision Trees 5.6% 22.5% 78.5% 38%
Boosting 0% 20% 79.3% 92%

5 Conclusions and Future Work

We began this project with a limited sense of what the
building operations data set contained and a desire to
demonstrate that a machine learning approach had the po-
tential to extract useful information from this data. Dur-
ing the initial investigations, our analysis focused on under-
standing data within a specific case type. To handle the
large volume of categorical data present within a case, we
used a “bag-of-words” model. Then, we used this model
to classify work order duration. The results of this analy-
sis are summarized in Table 2. The naive Bayes approach
performed the best with a test error of 0.17. We then uti-
lized PCA and showed that dimensionality reduction helps
visualize patterns in this data set. Because clear clusters
emerged in principal component space, we could construct
features out of building operations data using k-means clus-
tering, to be further utilized in prediction of monthly prop-
erty performance. The emergent time variant features along
with property description features showed potential for pre-
dicting future monthly net operating income - a novel ap-
proach to financial performance estimation with greater in-
sight from aggregation of day-to-day operations.

The next steps to this project follow three major direc-
tions. First, we would revise our work flow, and upgrade
hardware such that analysis of more data is possible. With
a revised approach, processing significantly more building
operations data would be possible, which would allow for
a larger number of examples and a more robust model for
predicting NOI with proper cross validation techniques. In
addition, more features such as internal data on tenants and
external data on the economy should be introduced to the
model once we have enough data such that high variance is
less of an issue. We also note that nearly all of our results
thus far indicate correlation, rather than causation. With
further analysis, particular conducted by someone with high
familiarity with the company, inferences about causal rela-
tionships may be more feasible. Second, we would more
rigorously study the patterns that emerge from clustering
the data. As a starting point, the initial choice of six clusters
for the work order duration data was somewhat arbitrary.
With further analysis, we would be able to more rigorously
identify clusters and sub-clusters and potentially some un-
intuitive yet meaningful groupings. The real power of this
analysis will come when we are able to identify patterns that
exceed what is possible with human intuition alone. Third,
perhaps the least novel from a machine-learning perspec-
tive, but the most pragmatic from an industry perspective,
would be to use simple supervised learning techniques, such
as the ones we implemented to predict work order duration,
to make other predictions within case types. For example,
a similar supervised learning approach may be a successful
way to deal with categorical tenant data and predict the
probability of a certain tenant paying their rent late. Or,
supervised learning techniques could be used to automate
simple decision making tasks within a given case type. With
enough years of recorded data, learning techniques could
also be used to predict a need for building repairs by an-
ticipating work orders before they are issued. We believe
that by capitalizing on the potential of their data, Boxer
Property can become an industry leader in applying ma-
chine learning techniques to operations data for enhanced
property management.
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