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Abstract— In this paper, we apply tools from machine learn-
ing to the burgeoning field of football analytics and predict
whether a team will run or pass the ball on a given play. After
training four different classification algorithms on data from the
2012-2014 NFL seasons, we developed an ensemble method that
combines the predictions of our two best-performing individual
models and achieved a test accuracy of 75.9%, improving
upon previously published results. We also explored general
trends in offensive predictability and found that teams are most
predictable on late downs and in the fourth quarter. Finally, we
conclude with an error analysis and assess whether our models
could provide value to an NFL coaching staff.

I. INTRODUCTION

In the National Football League (NFL), prediction has
long been an indispensable part of the game as teams devote
numerous hours and resources towards gleaning insights into
an opponent’s tendencies on the field. One area of immense
interest is assessing a team’s propensity to run or pass the
ball in a given situation. For a defense, having a sense of
whether an opposing offense will run or pass informs critical
decision-making about play-calling, personnel groupings to
deploy, and physical positioning on the field – choices that
have a substantial impact on the outcome of a game.

In this project, we take a data-driven approach to classi-
fying offensive play types and examine whether tools from
machine learning can offer value in characterizing offensive
tendencies. This topic has emerged as a very active area
of research in the sports analytics community in the last
year, and we looked to build upon this previous work
by incorporating more domain knowledge in our models.
In particular, we utilize additional features describing the
offensive formation on a play as well as the overall quality
of the players on a given roster.

We begin by training four independent models on data
from the 2012-2014 NFL seasons: logistic regression, linear
discriminant analysis, random forests, and a gradient boost-
ing machine (GBM). The input to our algorithms was a
particular play, described in terms of contextual information
such as the current down and yards remaining for a first
down, time remaining, the current score, field position,
and offensive formation, along with metrics capturing each
team’s season-long tendencies and strengths. Our models
then output a predicted offensive play type: run or pass.
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After implementing these initial algorithms, we developed
a mixed model that combined the predictions of the random
forest and GBM and achieved results that improved upon the
marks in the existing literature.

II. RELATED WORK

While predicting offensive play types has become a subject
of tremendous interest in the past year, academic research
into NFL play-calling spans several decades. Much of this
early work emerged from the operations research and eco-
nomics community as scholars looked to determine optimal
play-calling strategies through the frameworks of game the-
ory and decision analysis. In 1978, Carter and Machol [1]
initiated this line of inquiry in their seminal paper outlining
optimal fourth-down strategies which was later extended to
include goal-line situations by Boronico and Newbert [2] and
ultimately all plays by Jordan, et al. [3]. While our work
focused on predicting what play a team will run as opposed
to what a team ought to do, the foundation established in
these early papers in identifying the most critical situational
statistics for play-calling decisions proved valuable to us in
selecting features for our algorithms.

In 2015, interest in applying machine learning towards
football analytics began to blossom as William Burton and
Michael Dickey of North Carolina State University [4] ad-
dressed this question of predicting offensive play types. After
training logistic regression and random forest models on NFL
play-by-play data from the 2000-2014 seasons and testing on
a subset of their training data, Burton and Dickey reported a
prediction accuracy of 75% with a single-game high of 90%.

Ultimately, Burton and Dickey’s results marked a major
breakthrough in applying machine learning to football, but
their decision to test on their training set is questionable since
it risks overfitting and, in general, provides little information
on their model’s performance on unseen data.

Building off this previous work, a team from Booz Allen
Hamilton [5] presented a study at the 2016 MIT Sloan
Sports Analytics Conference that sought to predict both
the offensive play type and the direction of the play. By
developing more sophisticated features (such as a metric
measuring a team’s passing effectiveness in a game) and
building a pipeline that combined the results from five
separate learning algorithms, the Booz Allen team correctly
classified a play as a run or a pass 72.7% of the time after
training on play-by-play data from the 2013 NFL season and
testing on the 2014 season. In addition, they achieved 57.6%
accuracy in predicting the direction of the play. To date, these
results constitute the state-of-the-art in the literature and the
Booz Allen team’s stacked model approach of combining the



results of multiple algorithms seemed particularly effective
and served as the inspiration for our own mixed model.

III. DATA SETS AND FEATURES

As far as we can tell, the play-by-play data that has been
used in previous work only describes the state of the game
with features like down and distance, score margin, and
field position. One of the ways we hoped to gain predictive
accuracy is through better input data. Specifically, we sought
data describing the personnel on the field for each play and
measures of their quality. We acquired this raw data from
two sources: the NFL statistics and analytics blog Foot-
ball Outsiders (www.footballoutsiders.com) and a
repository of historic Madden NFL video game ratings for
each player hosted at maddenratings.weebly.com.

A. Football Outsiders Play-by-Play Data

Football Outsiders tracked information about personnel
groupings (i.e. the numbers of wide receivers, running backs,
defensive linemen, etc.) on the field for each play from the
2011-12 season to the 2014-2015 season for use in their
own analyses. However, these data are proprietary and we
are grateful to Aaron Schatz, editor in chief of Football
Outsiders, for granting us access for this project. In addition
to data detailing the numbers of players at each position, their
data set also includes auxiliary information such as players
lining up in atypical positions, whether or not the offense
was in shotgun formation, whether or not a quarterback run
was a designed draw or a coverage-forced scramble, etc. Of
all the various features included in the Football Outsiders
data set, we chose to use the following:

1) Score Difference
2) Current Quarter
3) Time Left in Quarter
4) Current Down
5) Distance to First Down
6) Count of Offensive Play-

ers per Position
7) Count of Defensive Play-

ers per Position

8) Formation (e.g. shotgun,
no huddle)

9) Indicator of an offensive
player out of position

10) Turnovers
11) Indicator of whether of-

fense is at home

B. Madden Ratings

We also sought to incorporate more domain knowledge
into our models by taking into account the strengths of
a given team. For example, a squad with outstanding
running backs or an offense facing a team excellent at
defending passes are both more likely to run the ball.
At maddenratings.weebly.com, each iteration of the
video game (released once per year) has 32 files, one for each
NFL team. Within each team-season file, each row describes
one player – name, position, jersey number, overall rating,
and each of the component attribute ratings (some weighted
combination of which precisely defines the player’s overall
rating). For our purposes, the player’s overall rating was all
that we needed to capture since the purpose of using these
data was to provide some generic measure of player quality.
In fact, including component attribute ratings (e.g. speed,

agility, strength, throw accuracy, awareness) may increase
the risk of overfitting.

Using the Madden player ratings and snap count data
from Football Outsiders, we derived scores for seven position
groups on each team: quarterbacks, running backs, receivers,
offensive line, defensive front, and secondary. To compute
these scores, we weighted each player’s Madden rating by the
percentage of snaps he played that season and then summed
these weighted scores for players in the same position group.
Our reasoning behind weighting by the percentage of snaps
played was to avoid penalizing teams for having low-rated
backup players who never see the field.

C. Derived Features

In addition to the position group scores computed via
Madden ratings, we calculated additional derived features
to provide information on a team’s season-long and in-game
tendencies to complete our full feature set.

13) Proportion of pass plays
called over week, season,
last 50 plays

14) Proportion of pass plays
faced by defense over
week, season, last 50
plays

15) Indicator of score differ-
ence greater than 7

16) Quarterback pass com-
pletion rate over week,
season, last 25 plays

17) Weighted Madden rat-
ing of each offen-
sive/defensive position
group.

IV. TECHNICAL APPROACH
In this section, we describe the various learning algorithms

we trained and provide an overview of the relevant perfor-
mance metrics we considered to analyze our results. As a
matter of notation, we will denote a single training example,
corresponding to a play, by x(i) with a corresponding label
y(i) ∈ {0,1} for i ∈ {1,2, . . .m} where m denotes the number
of training examples. In our representation, we let y(i) = 0
denote a run and y(i) = 1 a pass and let ŷ(i) denote the
label predicted by our algorithm for the ith training exam-
ple. To implement these algorithms, we utilized Python’s
scikit-learn library [6].

A. Preliminary Models

1) Logistic Regression - A natural algorithm for our bi-
nary classification problem is logistic regression which
produces outputs in the range [0,1] via a hypothesis
that takes the form of the logistic function

hθ (x(i)) =
1

1+ e−θ T x(i)

The parameter θ is fit by performing gradient descent
on the following loss function where we add an `1

regularization term.

`(θ)=
m

∑
i=1
−(y(i)hθ (x(i)))+(1−y(i))(1−hθ (x(i)))+λ ||θ ||1

If the output of the logistic function is greater than
our classification threshold of 0.5, we set ŷ(i) = 1 and,
conversely, for any output less than 0.5 we set ŷ(i) = 0



2) Linear Discriminant Analysis (LDA) - As an alter-
native to logistic regression, we also considered a
generative model which attempts to learn the defining
characteristics of a run play and a pass play and then
classifies a new example by determining whether it is
more similar to the former or latter category. The LDA
algorithm is a generative model that projects the input
data onto a two-dimensional subspace and then fits
a linear boundary between the two learned classes to
make a prediction. As a result, LDA is also commonly
utilized as a dimensionality reduction technique. LDA
assumes that its features are drawn from a multivariate
Gaussian distribution with a mean vector and common
covariance matrix across each class. It uses a Bayes
classifier to assign an observation x(i) to the class k in
which the probability

δk(x(i)) = x(i)
T

Σ
−1

µk−
1
2

µ
T
k σ
−1

µk + logπk

is highest. Here Σ denotes the covariance matrix, µk
the mean vector, πk the proportion of training examples
that belong to class k, and δk(x(i)) the probability of
training example x(i) belonging to class k.

3) Gradient Boosting Machine (GBM) - Taking on a
different paradigm for approaching this classification
problem, boosting is an ensemble technique that com-
bines the performance of several weak-learning algo-
rithms that perform slightly better than random into
a very strong classifier. In the scikit-learn im-
plementation of gradient boosting, each weak learner
takes the form of a decision tree. The algorithm per-
forms gradient descent on a differentiable loss function
to assign weights to training examples misclassified
by previous weak learners and then generates a new
decision tree that does well on precisely these missed
examples. After tuning, we set a hyperparameter of
300 weak-learning decision trees in our model.

4) Random Forest - One of our more effective methods
was a random forest, which, like the GBM, is an
ensemble of decision trees that produces a better pre-
diction when combined together. Decision trees, while
very easy to understand and simple to use, are not very
good at making any type of prediction on their own.
One of the first ways to reduce a decision tree’s high
variance is to apply bagging (bootstrap aggregating).
After bootstrapping B separate training sets, we would
average the results of these bootstrapped training sets
to create a single, lower-variance statistical model

f̂bag(x(i)) =
1
B

B

∑
b=1

f̂ ?b(x(i))

As with the GBM, we found that 300 trees gave us the
best results.

B. Mixed Model Approach

After training our four initial algorithms, we then exam-
ined whether we could combine the predictions from these

models to develop a stronger classifier. After experimenting
with assigning weights to the output of each algorithm, we
found that taking a weighted average of the outputs of the
GBM and random forest gave us the best results with a 60%
weighting given to the GBM and and 40% weighting to the
random forest. Then, we again make a prediction by setting
ŷ(i) = 1 if the output of the mixed model algorithm is greater
than the classification threshold of 0.5 and 0 otherwise.

C. Error Analysis Metrics
For classification problems, a very intuitive metric for

assessing the performance of an algorithm is accuracy which
measures the proportion of examples classified correctly.
Formally, accuracy is given by 1

m ∑
m
i=11{ŷ(i) 6= y(i)}

In the context of NFL play-calling, predicting incorrectly
can have very adverse consequences as defensive formations
designed to stop a run may be very ill-equipped to defend
a pass and vice versa, and we wanted to see if our model
was more likely to make a certain type of misclassification.
As a result, we considered two additional metrics precision
and recall that assess such performance. The former metric
measures, for each class, the proportion of true positive
classifications while the latter measures, for a given class, the
ratio of true positive labels to the total number of examples
assigned that predicted label. Formally, for a classification
problem with k classes, we can define the precision pk and
recall rk of the kth class as

pk =
∑

m
i=11{ŷ(i) = k∧ y(i) = k}

∑
m
i=11{ŷ(i) = k}

rr =
∑

m
i=11{ŷ(i) = k∧ y(i) = k}

∑
m
i=11y(i) = k}

where in our binary classification problem k ∈ {0,1}
Finally, we also plotted a receiver operating characteristic

(ROC) curve which plots the true positive rate vs. the false
positive rate as the classification threshold varies. If our
classifier is strong, then the true positive rate will increase
very quickly. With the ROC curve, we can also examine
the area under the curve, known as the AUC, which can be
interpreted as the probability that a random example with
a true label of 1 will be assigned a higher score by the
algorithm than a random example with a label of 0. Thus, an
AUC score close to 1 indicates that a classifier is performing
well.

V. RESULTS & DISCUSSION

A. Overall Accuracy
After training our algorithms, we looked to measure how

well our model would generalize to unseen data by imple-
menting 10-fold cross validation and then testing on 10% of
the original data, which we did not train on, to report final
results.

Model Training Accuracy Test Accuracy
Logistic Regression 0.738 0.737

Linear Discriminant Analysis 0.731 0.727
Random Forest 0.758 0.751

Gradient Boosting Machine 0.764 0.757
Mixed 0.763 0.759



As mentioned earlier, the mixed model, obtained by taking
a weighted average of the outputs of the GBM and random
forest achieved the best results with an accuracy of 75.9%,
an improvement over the benchmarks in the literature. More-
over, we see that, across all models, our training accuracy
was marginally higher than our test accuracy, suggesting that
we were not overfitting our data by a substantial amount.

B. Situational Results

On top of examining the overall accuracy of our models,
we also considered the performance of our algorithms on a
down-by-down and quarter-by-quarter basis (where the fifth
quarter denotes overtime).

In both plots, we see very little deviation in the perfor-
mance of our algorithms relative to each other, suggesting
that our best models tended to outperform the others across
different inputs. We also observe that our accuracy increases
on later downs, which likely stems from the fact that teams
become more concerned with gaining enough yards to move
the chains on third and fourth down which limits the scope of
available plays. Similarly, we find that teams become more
predictable in the second and fourth quarters, most likely
because the ends of these quarters have outsize effects on
the outcome of the game. In particular, 4th quarter accuracy
is highest because score margin and time remaining often
directly dictate play-calling in end-of-game scenarios.

Conversely, we found that many of our misclassifications
came in the first and third quarters where teams often deviate
from their tendencies by making adjustments both before a
game and at halftime.

C. Assessing Team Predictability

As a consequence of our results, we can assess which NFL
teams tended to be the most predictable over the course of
a game and a season as well as which teams emerged as
unpredictable play-callers, a metric that also provided further
insight into our error analysis.

Year Week Team Accuracy
2013 11 Tennessee 0.946
2013 8 Tampa Bay 0.943
2014 7 Dallas 0.934

...
...

...
...

2012 12 Philadelphia 0.551
2013 14 San Francisco 0.522
2013 6 Denver 0.472

TABLE I
BEST AND WORST PREDICTED GAMES

Year Offense Accuracy
2014 Dallas 0.860
2014 San Diego 0.830
2012 Arizona 0.823

...
...

...
2014 Seattle 0.685
2013 Seattle 0.680
2014 Miami 0.676

TABLE II
BEST AND WORST PREDICTED TEAM-SEASONS

From examining the teams on whom our algorithm accu-
mulated a large number of mistakes, we noticed that many
of those squads featured mobile quarterbacks, headlined
by Seattle (Russell Wilson), Carolina (Cam Newton), and
Philadelphia in 2013 (Michael Vick). Upon further exam-
ination, we found that we were inaccurately classifying
quarterback scrambles 77% of the time since such plays
are designed to be passes but end with the quarterback
running. Fortunately, the Football Outsiders dataset indicated
whether a quarterback run was a designed call or a scramble
stemming from an abandoned pass play. After relabeling all
such scrambles as pass plays, we were able to improve our
accuracy from our initial results presented in our poster by
over 1%. From our current results, we still see that teams
with mobile quarterbacks are difficult to classify for our
algorithm which, we hypothesize, is due to the fact that dual-
threat signal-callers provide more flexibility and hence an
additional layer of unpredictability for an offense.

D. Error Analysis

Below we include the confusion matrix for our classifier,
which charts the total number of plays we classified correctly
as well as the number of run plays we labeled a pass and
vice versa.



As we discussed earlier, these metrics are very important
in the application of play-calling. From the confusion matrix,
we see that we mislabel a pass play as a run 22.1% of the
time and mislabel a run as a pass approximately 27% of the
time. While, as a matter of future work, we aim to improve
both of these errors rates, this behavior of misclassifying
a greater proportion of run plays is much preferred to the
alternative since pass plays, on average, result in more yards
and can thus be more damaging to a defense, particularly for
an unsuspecting one.

From the confusion matrix, we can also calculate the
precision and recall scores across each label:

Play Type Precision Test Recall
Run 0.670 0.727
Pass 0.822 0.779

We also plot our ROC curve above with the corresponding
AUC value, suggesting that our classifier would assign a
random pass play a score higher than a random running play
with probability 0.84, a sign that our classifier generalizes
well.

VI. CONCLUSION AND FUTURE WORK

In this project, we apply machine learning techniques to
predict offensive play types in the NFL, using a rich dataset
that provides detailed information on player personnel and
formations and augmenting this data with scores to measure
player quality on a given team. After training four classifica-
tion algorithms, we found that the ensemble tree methods of
random forest and gradient boosting outperformed both lo-
gistic regression and linear discriminant analysis most likely
because the latter two models attempt to find a linear decision
boundary which does not need seem to lend itself well to this
particular problem. We were then able to combine our two
top-performing methods into a mixed model that achieved a
test accuracy of 75.9% which marks an improvement over
previously published results.

In the future, we would like to extend our work in
several exciting ways. One particularly intriguing avenue is
extending our models to predict not only the type of play but
also the direction (either left or right). While being able to
effectively predict run vs. pass plays is certainly valuable for
any NFL defensive coordinator, further information on the
direction of the play could be even more valuable in gaining
a competitive edge. As an extension of this idea, we would
also like to look into making our algorithms more granular
and predict specific play types such as a “screen” or “draw”
play for runs and route combinations on pass plays. Football
Outsiders has already done some work in labeling plays with
this level of granularity and, as this data becomes more robust
and available, we would be interested in applying our models
towards predicting more specific play types.

Moreover, previous studies predicting NFL play-calling all
utilized timeouts remaining as a key feature in their models,
but we were unable to do so because our dataset did not
specify which team called the timeout. With additional time,
we could look into augmenting our dataset with this informa-
tion, which we suspect would improve our results. Another
important feature that we did not have in our data that
would almost certainly improve our results is the weather,
and we would also like to incorporate that information into
our models.

Finally, we would also be interested in looking into the
possibility of building a web or mobile application that NFL
coaches could use to input in-game situational statistics and
obtain a play prediction. Currently, the NFL does not allow
outside technology on the sidelines or in the coach’s booth
outside of still pictures, but with many expecting the rules to
change in the near future, tools that can contribute to play-
calling decisions could emerge as extremely valuable and our
project, with this additional work in the future, might be able
to provide such value.
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