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ABSTRACT

In this project, we implement both feature-extraction based
algorithms and an end-to-end deep reinforcement learning
method to learn to control Chrome offline dinosaur game
directly from high-dimensional game screen input. Results
show that compared with the pixel feature based algorithms,
deep reinforcement learning is more powerful and effective.
It leverages the high-dimensional sensory input directly and
avoids potential errors in feature extraction. Finally, we
propose special training methods to tackle class imbalance
problems caused by the increase in game velocity. After
training, our Deep-Q AI is able to outperform human
experts.
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1. INTRODUCTION

Learning human-level control policies directly from high-
dimensional sensory data (such as vision) is a long-standing
challenge for controlling system design. Many classical
control algorithms are based on accurate modeling or
domain knowledge of the underlying dynamics in the system.
However, for systems with unknown dynamics and high
dimensional input, these methods are unrealistic and hard
to generalize.

In this project, we propose Deep Q-learning, online
learning Multi Layered Perceptron (MLP) and rule-based
decision-making (Human Optimization) for learning to
control the game agent in T-Rex, the classic game embedded
in Chrome offline mode, directly from high-dimensional
image input. All methods are based on two ways of state-
space simplification. The first way is to extract pixel-
based features and detect objects using computer vision
approaches for imitating human player, such as MLP.
The other is to automatically learn patterns from resized
raw game image without manual feature extraction, such
as Deep Q-learning. To be specific, the input to Deep
Q-learning algorithm is a stack of 4 images. We then
use reinforcement learning to update the training samples
in neural network and leverage a Convolutional Neural
Network(CNN) to predict which action to take under given
circumstances.  Similarly, we take the extracted pixel
features as input and use MLP or rule-based decision-
making (Human Optimization) for prediction. The results
reveal that our approaches significantly outperform even the
experienced human player in the game.

This is a joint project for CS221 and CS229. For CS221,
we implemented the extraction of pixel-based features from
the game screenshot and the MLP algorithm. We also focus
on the implementation of Q-learning framework, and the
comparison between hand coded online learning methods
and deep reinforcement learning. For CS229, we focus our
efforts on the deep Q-learning network model, the choices
of hyperparameter of training, the special training method
and analysis of our training process. We also analyse the
effect of acceleration in T-Rex and compare our game with
other games.

2. RELATED WORKS

The well-known story of TD-gammon is one of the
milestones in reinforcement learning. It used a model-free
TD-learning algorithm similar to Q-learning and achieved
human-expert level performance [4]. Since then, the use of
reinforcement learning has popularized and various attempts
have been made to apply reinforcement learning on games.
In 2013, Google Deepmind proposed the use of deep
reinforcement learning on training agents to play the 2600
Atari games [3, 2]. Taking just the pixels and reward
received from the game as inputs, they were able to reach
human-expert performance in multiple Atari games. The
main advantage of Deep-Q learning is that no specification
of the game dynamics is needed in spite of the high-
dimensional image input. The agent is able to learn to play
the game without knowing the underlying game logic. To
process the image data, they use a deep Q-network (DQN)
to directly evaluate the Q function for Q-learning. An
experience replay is also applied to de-correlate experiences.
This framework is model-free and can generalize to a lot
of similar problems. After their research, many papers
tried to make improvements. Further improvements involve
prioritizing experience replay, more efficient training, and
better stability when training [2].

3. DATASET AND FEATURES

Our game is implemented in Pygame, a handy python
game package which allows us to extract game screen shots
at each frame. Without touching the underlying dynamics
of the T-Rex game, the state-space would be a set of screen
shots in the form of 1200x300 grid of RGB pixels. However,
modeling this large state-space directly is difficult and
computationally expensive. Thus, we apply preprocessing to
raw pixels for data filtering and feature extraction. Different
preprocessing procedure is adopted in different algorithms.

3.1 Preprocessing in Q-Learning

In Q-Learning model, we applly the standard
preprocessing in atari games according to [3]. Firstly we
convert the image to grayscale, and then resize the image
to 80 x 80 grid of pixels. Finally we stack the last 4 frames
to produce an 80x80x4 input array for the Deep Q-Learning
network.

3.2 Preprocessing in Pixel Feature Based
Algorithms

In other pixel feature based algorithms (Human
Optimized and MLP), we extract pixel-based features from
the raw game image pixels for state-space reduction. The
features involve the bounding boxes of T-Rex and obstacles,
relative moving speed of obstacles as well as the status of the
T-Rex (whether the T-Rex is jumping, dropping or ducking
etc). We used OpenCV [1], an open source computer vision
tool for pixel-based feature extraction. Those features come
from an intuitive understanding of how a human agent would
play the game: identify the dinosaur, obstacles, their relative
positions and velocities, and then decide the next action for
T-Rex. The details are as follows.

Background Filtering

The first step in extracting pixel-based features from the
screen shot is to filter out useless pixels in prediction, such
as the horizon and clouds. We also convert the image into



Figure 1: Image after filtering background

Figure 2: Results for bounding boxes and objects
classification. a)Classified as T-Rex and bird; b)
Classified as T-Rex, Cactus and Cactus.

grayscale to reduce the state-space. Figure 1 shows an
example image after filtering the background.

Object Detection

After filtering the background, the objects are easily
separated. We leverage OpenCV to detect the contours
of the objects and find the corresponding bounding boxes.
Each bounding box is represented by the x, y positions of
the upper-left corner as well as the width and height.

Object Classification

Given bounding boxes, it is important to determine the
type of each object. Since there are only three kinds of
sprites (T-Rex, cactus, bird), we can use the width and
height of the bounding boxes to classify the objects. We've
compared the object detection results with the ground truth
fetched from the game engine. Results show that our
algorithm can accurately detect the objects using raw pixel
input (almost 100%).

Object Tracking

The final step of pixel-based feature extraction is to
calculate the speed of the obstacles and whether T-Rex is
jumping. We track objects from frame to frame in order
to measure the derivatives of each object on the screen.
The tracking algorithm is a simple greedy matching of the
nearest bounding box with the same type. By comparing the
position of the detected object in two adjacent frames, we
calculate the moving speed for each obstacle. Furthermore,
by calculating the vertical speed of the T-Rex, we can infer
whether the T-Rex is jumping up or dropping down.

4. MODELS
4.1 Rule-based Decision-making (Human
Optimization)

In this method, we imitate the experienced human players
and learn their greedy policy. Intuitively, human player
would consider the ratio of the height of the obstacles
and the width to get the optimized jumping position.
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Figure 3: Structure of Multi Layered Perceptron

In addition, they would consider relative velocity and
the distance from the obstacles in order to infer the
security distance given their reaction capacity. Therefore,
we manually tune these parameters to acquire the most
reasonable jumping position ahead of the obstacles, given
their distances, relative velocity as well as the height and
width.

4.2 Multi Layered Perceptron

We propose an online learning Multi Layered Perceptron
(MLP), which takes the pixel-based features as input,
to predict the optimized jumping position ahead of the
obstacles.

In this work, we leverage the pixel-based features
extracted by our image processor using OpenCV, including
the information of a list of obstacles in front of the agent.
For a single obstacle, such as a cactus, we extract at least
four features, including 1) its distance from the agent, 2) its
height, 3) its width, and 4) the relative velocity to our agent.
The features then go through a multi-layered perception
network which conceives decisions about whether to jump
or stay on the ground under current circumstances.

We use online training to improve the performance of
MLP. When the agent hits obstacles while jumping, we
assume it should have jumped ahead of the position in which
it takes off. Comparatively, when the agent hits obstacles
while dropping, we infer there should have been a delay in
the current jumping and the agent should have stayed on the
ground on the current jumping points. In addition, if the
agent crashes into the obstacles while staying on the ground,
we assume it should have jumped on the latest movement.

4.3 Deep Reinforcement Learning

In this section, we will discuss MDP formulation, the basic
idea and parameters of our algorithm.

MDP Formulation

We choose model-free Q-learning algorithm as our
reinforcement method so that we don’t need to build a
complex MDP model and learn the transition probability.
The action space of our MDP model is that the agent either
do nothing(a = 0) or jump(a = 1). Note that when the T-
Rex performs jumping, it loses the ability to control itself



for a while and keeps flying until it reach the ground again.
This property is quite different from a lot of other Atari
games, where the agent can control itself any time in the
whole game. In order to capture the speed of objects, we
input four frames’ images as the state of MDP. The discount
factor + is chosen to be 0.95 to make the Q converge faster.
The reward function is defined as giving a negative value
whenever the agent dies. The value is set to —100.

Q-learning Method

When we train our agent using Q-learning method, the
agent takes action under certain policy and gets series
observations from the game, which is a path shown as:

{so;a1,71, s1;a2,72, 525 ...;An, Tn, Sn; }

If the state space is discrete and the transition is known,
for each (s,a,r,s) tuple, the Q value of each action can be
updated using the Bellman equation:

Qr(s,a) = Z T(s,a,s)[Reward(s,a,s’ )+~ max Qr (s',a")]

When transitions are unknown, we can directly update Q
using every single observation tuple (s,a,r,s’):

Qopt(8,a) < Qr(s,a) — n[Qopt(s,a) — u]

= Qopt(5,0) = n[Qopi(5,a) = (r + max Qopi(s', a'))]

Due to the high-dimensional image input, the state will
be really large and impossible to learn. So we use a
Convolutional Neural Network to functionally approximate
the Q value of each state. Assuming the weights of CNN
is w, the learning process is then equivalent to optimize the
cost for all observations:

min Y (Qope(s, @) — (r + max Qope(s',a')))?

(s,a,m,s")

The optimization can be done using the backward
propagation training method of CNN.

Batch Training

If we train our CNN at every single frame, the training
may suffer from several problems. Since the state at time ¢
is highly correlated with state at time ¢+ 1, gradient descent
after consecutive steps will cause erratic updates making the
training very slow. In order to fix this problem and make
the training faster as well as more stable, we use the batch
training method. During training, we maintain a memory
with capacity 50000 and save the observations at each frame.
Then after the observation phase we would choose a batch
of data from the memory randomly to train our CNN. This
experience replay strategy makes the training much more
efficient and the experience observed are no longer highly
correlated.

Training Parameters

If we choose the optimal action every time, the Q-learning
training may converge to a local optimal policy. In order
to make the agent explore more states and policies, we
use the e-greedy method to do random action under some
probability. The value of € decreases linearly overtime. The
choice of initial € and the total steps of exploring are essential
for our training because our game is quite different from
other games: First, the agent can not control itself and take
any action when the T-Rex has already jumped into sky. As
a result, even a small ¢ will make the agent die very fast.
Second, the difficulty of T-Rex game increases gradually (by
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Figure 4: CNN architecture

changing speed of T-Rex). After we have decreased the e
and kept the T-Rex alive for a long time, the agent can not
explore any more during the high speed mode of game. This
contradiction makes the regular training method with linear
decreasing € not so effective and we need to find some new
training method for our model, which will be explained in
the following section.

CNN Architecture

The CNN used in our reinforcement learning contains
three convolution layers(with ReLU layers follow them), one
max pooling layer and two fully connected layers. The four
images first go through a convolution layer with 32 filters of
size 8 x 8 with stride 4, followed by a ReLU layer. Then a
2 x 2 max pooling is applied to the output of convolution.
The tensor then go through two convolution layers with 64
filters of size 4 x4, stride 2 and 64 filters of size 3 x 3, stride 1.
Finally the flattened tensor go through two fully connected
layers and outputs the Q values for two actions.

S. EXPERIMENT AND DISCUSSION
5.1 Settings

We leverage the online learning method to collect the
training data and fit our model iteratively. For those ruled-
based methods without training, we manually tune the
important parameters and run for certain rounds to test the
robustness of the methods as well as the performance.

Initially, there is acceleration in T-Rex’s relative velocity.
We test all the baseline and proposed models under three
scenarios, including the ones 1) with normal acceleration
and velocity ranging from 6 and 13, 2) fixed velocity of
6 and 3) fixed velocity of 9. We find that game velocity
has a significant impact on the agent’s performance. For
instance, in those rule-based baseline methods, the length
of reaction window is strictly related to the velocity. Once
the agent reaches a high speed, it is more likely to run into
the obstacles so the jumping should be scheduled earlier. In
addition, for online learning model, the acceleration results
in an imbalanced class of different speed during the training
process which we would discuss later.

For evaluation, we report the averaged scores and the
standard deviation.

5.2 Baselines

We compare our Deep Q-learning methods and MLP
supervised learning methods with following three baseline.
Keep-Jump



Keep-Jump is a naive model in which the agent keeps
jumping regardless of its distances from the obstacles nor
the attributes such as the height and width. This baseline
represents the performance of those agents without artificial
intelligence over the game.

Human Optimized Approaches

Given the features extracted from the game image, we
implement one baseline imitating the human players, where
the T-Rex jumps whenever the first obstacle is close enough
(less than 200 pixels). This baseline follows the intuitive
greedy player strategy. It only considers the closest obstacle
on the screen.

Human Player Records

We invite some experienced players who hold records of
1000 points in T-Rex games and ask them to compete with
our agents. In this way, we could see different decision
making process between human and Al as well as their
performance.

5.3 Comparison with the Game Flappy Birds

We notice, there are some prior CS229 projects on
using deep Q learning to train Game Al, including some
interesting ones for the game Flappy Birds. However, our
game is much more difficult than theirs and we propose
better solution comparatively as follows.

Firstly, the state-space are more constrained in game
Flappy Birds, which makes it easier to coverage in Deep
Q-learning. For instance, the distance between adjacent
pipes are fixed and the bird travels at fixed speed rates.
In this way, states could be discretized manually given
the relationship between velocity. However, in T-Rex, the
positions of the obstacles are random and the velocity is
increasing with acceleration. In this way, class imbalance
would occur and needs to be handled carefully. Moreover,
since it is guaranteed that the bird could trespass the space
from top to the bottom between two adjacent pipes, only the
nearest obstacles need to be considered. In comparison, in
both MLP and Deep Q-learning, we need to consider a list of
obstacles because the difference in jumping position would
result in different landing position affecting the reaction
window for the following obstacles.

One of the significant difference is that, in Flappy Birds,
the agent is allowed to adjust gesture and take additional
actions to avoid the obstacles while in T-Rex, once the
jumping position is determined, so would the results. There
is no additional action allowed while jumping to avoid the
upcoming obstacles so the difficulty increases.

Last but not the least, the only obstacles in Flappy Birds
is pipes. In T-Rex, there are different types of obstacles
(cactus and birds) in different height and width. In addition,
even a same obstacle with different velocity would have
totally different impacts on the decision-making process.
Thus, we believe there are more challenges to tackle within
our case.

5.4 Online Learning MLP

In this section, we analyze the results of MLP model.
Given a list of obstacles to learn the optimized jumping
position, we notice the average scores cease to increase over
900 rounds iteration. In addition to the deviation of image
processor, we believe the overwhelming computation over
parameters in a fully-connected network undermines the
performance as well. To support it, we conduct a similar
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Figure 5: Training curve of MLP

experiment with less obstacles information. Illustrated in
Fig 3, the average scores increases significantly and standard
deviation decreases in line.

5.5 Deep Q-learning

As is stated in previous sections, the velocity of the game
has a significant impact on the performance of Deep Q-
learning algorithm. We trained our Deep Q-Learning model
in the game with acceleration and the game with constant
speed. The comparison of these two scenarios is illustrated
in Figure 6 a). When learning to play the game with
constant speed, Deep Q-learning is able to achieve much
higher performance within fewer iterations than learning to
play under varying speed. Therefore, we need to find a new
training method to effectively learn to play the game under
acceleration.

In traditional exploit-exploration strategies for Deep Q-
learning, € value decreases overtime to make sure the agent
explore more states at the beginning stage under a large €
and then gradually decrease the € to ensure the final online
policy converge to the optimal policy. However, since our
T-Rex game accelerates gradually and the agent need to
deal with different speed modes in a single round of game,
the regular training method for Deep Q-learning has some
problems. This can be explained by our learning curve
shown in Figure 6 b). Firstly when we use the regular
training method (shown in TRAINING PHASE I, with blue
background in Figure 6 b), the learning curve flattens after
1.3 million turns of training, where the average of 20 test
turns is about 750 and max score of 20 rounds is 1000.
The error analysis shows that under most cases, the T-
Rex dies due to the random actions (Even though our e
value begins from a small value of 0.1). As is explained in
previous section, this is because the agent can not control
itself while jumping. So even a small € will result in T-Rex’s
random jump. Once it jumps, the agent loses the ability to
control, and is likely to run into the adjacent obstacles under
circumstances with high velocity. To solve this problem, we
introduce a TRAINING PHASE II. We make the € equals
zero, meaning no exploration. Then the performance of our
algorithm continues to increase and reaches an average score
of 1000 and max score of 2000 for 20 test turns.

However, difficulty level changes with the increasing
velocity. In TRAINING PHASE II, only when we finish the
exploration stage can we reach the high speed mode. In this



Algorithm Average 20 | Max | Std
Keep-jump 41 111 23
Human-expert 910 1500 | 420
Human-optimized 196 4670 | 134
MLP 469 1335 | 150

Deep Q-learning 1216 2501 | 678

Table 1: Comparison between different models

way, class imbalance occurs with far fewer training items
in high speed cases comparatively. The imbalance would
make the agent even less likely to respond to high speed
mode after 1000 scores. In addition, e-greedy prohibited
the agent from getting higher scores. It is because random
jump would result in unexpected crash into the obstacles.
However, we should not cancel the e-greedy under high-
speed mode entirely. Otherwise, we can play to the high
speed mode to cover the imbalance cases but no exploration
occurs under this situation.

To make the agent not only see the high speed mode but
also keep the exploration, we use another training method
in the TRAINING PHASE III. We train our agent with
large acceleration for 0.5 million iterations and keep the e-
greedy at the same time. During these iterations, the agent
will observe a lot of high speed samples. Subsequently, the
model is retrained for an extra 10000 iterations under normal
acceleration mode to get used to the original game. This
training method largely increases the performance of our
algorithm and make the average score a 25% increment.
The maximum score also reaches the 2500 points with an
increment of 500 points. As a result, the performance of
our algorithm after three training phases is better than the
human experts.

5.6 Comparison Between Different Models

In this section, we compare the performance of baselines
and our proposed models. Table 1 displays the difference
over the average scores in 20 rounds, maximum scores and
standard deviation of these models. We find that the
baseline Keep-jump get the lowest average and maximum
scores. Intuitively, the agent misses the most optimized
jumping position in continuous jump. We notice that
both MLP and Deep Q-learning methods outperform the
human optimized approach with 2.39 times and 6.20 times
the average scores. In addition, Deep Q-learning beats
the human experts in both average scores and maximum
scores. The overwhelming maximum scores in human-
optimized method could be explained with the randomness
of the position and size of the obstacles. In cases
where obstacles are sparse, the human-optimized approaches
perfectly handles the distance between adjacent obstacles
and would survive even in extremely high speed mode. In
summary, our MLP and Deep Q-learning methods are more
intelligent than the rule-based decision making. Specifically,
Deep Q-learning succeeds to upbeat the human intelligence
in T-Rex game.

6. FUTURE WORKS

In our project, neither MLP nor Deep Q-learning handles
velocity well enough. In Deep Q-learning, we notice
velocity makes great impact over the jumping position
selection. During the process of training agent with different
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Figure 6: Training curve of Deep Q-Learning with
different acceleration in different phases

acceleration and velocity, we observe that the agent tends
to use policies incorrectly fitting the current velocity when
the relative speed changes. Two possible explanations are
as follows. Firstly, we simplify the computation in neural
networks by resizing the raw game image into 80 x 80 pixels.
In this way, the edge of the obstacles would be obscure which
negatively influenced the prediction. Another problem is
that we use four images in stacking to infer the relative
velocity based on their differences. If more channels are
added in the game image, more deviation would be detected
in both MLP and Deep Q-learning in order to capture the
change of velocity.

7. CONCLUSION

Several approaches were used to achieve the AI that can
play Chrome Offline Dinosaur Game. For the feature-
extraction based algorithm, computer version methods
can recognize the T-Rex and obstacles from the images.
Carefully designed feature extraction algorithms can
successfully abstract the state and Al built upon them can
improve its performance significantly compared with naive
baseline. MLP learned from online training can strengthen
the AI further for it refines the parameters automatically
by experience. However, feature-extraction based algorithm
have their limits and can not outperform the human experts.
For end-to-end Deep-Q learning method, our result shows
that it can successfully play the game by learning straightly
from the pixels without feature extraction, and is much
stronger than the feature-based method. Finally, specially
designed training method can help us overcome the training
difficulties caused by the properties of our game, which
further improves our Al’s performance and helps achieve
super-human results.
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