
CS229 Project: Building an Intelligent Agent to play 9x9 Go

Shawn Hu

Abstract— We build an AI to autonomously play the
board game of Go at a low amateur level. Our AI
uses the UCT variation of Monte Carlo tree search
algorithm to select its actions, with playouts weighted
by prior knowledge of tactical features learned from
records of master-level play. We achieve a relatively weak
strength of 18 kyu due to computational constraints, but
demonstrate significant improvement over raw MCTS.

I. INTRODUCTION

Go is classically a very hard game for AI to learn.
Because the game’s complexity depends on a vast
array of properties that emerge from a small set of
simple rules, human gameplay depends on reducing
the state space by applying a large set of heuristics
that depend on local shape, learned proverbs, and a
subtle mix of tactical and strategic considerations. For
computers, this means that traditional approaches to
games like alpha-beta minimax achieve extremely poor
results for Go- the branching factor is too large, and it
is extremely difficult to design an evaluation function
that prunes the search tree well enough. The Monte
Carlo search algorithm, invented in 2006, was the first
search algorithm that allowed Go AI to achieve a high-
amateur level on even the 9x9 board [1]. By contrast,
pre-MCTS Go bots operated using a large collection
of hard-coded positional heuristics [8], which largely
depended on the Go knowledge of their authors. This
project lies in the middle of the two approaches, and
attempts to use machine learning to automatically learn
some of these simple positional heuristics for use in a
basic Monte Carlo Tree Search agent.

Acknowledgement: This project is closely related to
a CS221 project, which is also about Go. The CS221
project concerns solving Go problems, and as such
shares the architecture for the Go board and contains
similar architecture for reading SGFs. It also contains
a very basic variant of our Monte Carlo Tree Search
agent.

II. DATASET

Our input consists of 13,175 SGF files which contain
records of games played on the CGOS servers. The
games were played at 2500-2800 ELO (5-9 dan), a

high amateur to low professional rating. Each of these
.sgf files is a textual representation of the sequence of
moves played in the game. To integrate the data with
our Python implementation, we processed the data to
play out these .sgf’s on a Python Go board, and we
analyzed the resulting states.

III. ALGORITHM

Broadly, the structure of the overall method is as
follows:

1) Learn weights for a set of features from the
dataset.

2) Use these weights to define an evaluation func-
tion on actions and states.

3) Use the result of this evaluation function as a
prior to provide a smart ordering for Monte Carlo
tree search exploration.

A. The Monte Carlo Tree Search Algorithm

Monte Carlo tree search (MCTS) is an algorithm that
works by iteratively building a search tree according
to some randomized policy. After a new node on this
tree is created, the game is played out according to an
extremely weak (usually random) policy to determine
the winner, and the result is propagated up the tree and
records are stored in the tree’s nodes.

The policy is such that after multiple iterations have
been executed, the agent follows those moves that are
have won more often in previous playouts, thus leading
the agent to spend most of its computation time on the
most promising moves.

Each iteration of the MCTS algorithm consists of
four stages:

1) Selection: Starting from the root node, we select
a node with probability proportional to its win percent-
age. We proceed until we reach a leaf node.

2) Expansion: Starting from this leaf node, me
create a child node, which corresponds to taking a
move from the leaf node’s state. This move is chosen
according to some prior distribution, which in our
algorithm is calculated based on the features of the
resulting states.



Fig. 1. The MCTS algorithm on an example tree.

3) Playout: From this child node, random moves are
made until the game ends. The winner of the game is
then calculated.

4) Backpropagation: The result is then recorded,
and the record for each parent of the new node is
updated to reflect the winrates of each state. In future
playouts, this information may be used to affect the
policy in nodes that are played sufficiently often.

B. The UCB1 Selection Algorithm for MCTS

UCB1 is a selection algorithm which is part of
the UCT variation of MCTS. UCT, which stands for
Upper Confidence Bound to Trees, is a variation which
improves on standard MCTS as a method for making
decisions based on prior knowledge in the selection
phase. In particular, UCB1 works by defining a confi-
dence interval for the value of every move, proportional
to the amount of MCTS lines which have followed that
move. Then, during each selection phase, UCB1 picks
the move with the highest upper bound on its potential
value. This behavior is desirable because with the right
definition for the confidence interval, UCT can balance
the time spent searching between following good lines

of play and exploring many lines of play- if a line
is good, its expectation increases, so it will be played
more, until the confidence intervals for the other moves
widen due to increasing uncertainty. Then, those moves
are explored, and if they are not viable candidates the
agent will return to exploring the strongest lines of
play. In fact, it has been shown that using a confidence
interval of width √

2lnx

xi

, where x is the number of total plays and xi is
the number of plays on a fixed move, asymptotically
minimizes the expected difference between the optimal
strategy and the taken strategy.

The AI is given, for example, thirty seconds to
perform its playouts. After calculation time ends, we
choose the move with the most playouts, which by the
nature of the algorithm often corresponds to a high win-
rate.

One huge advantage of UCB1-MCTS, for this project
and for the field of Computer Go in general, is that it
does not make use of an explicit evaluation function,
and does not necessarily require any prior knowledge
about how the game works- both things which are
notoriously difficult for humans to translate well into
code for Go. The algorithm benefits from the random
policy in its playouts because they are extremely quick
to compute, allowing the agent to quickly direct its
search to the most promising nodes.

C. Features and Learning

Top-level Go bots, including AlphaGo [5] guide the
MCTS search using a policy network and a value
network. The policy network is used to immediately re-
duce the branching factor by favoring moves which are
likely to be good based on tactical considerations. This
is weakly analogous to the human method of choosing
moves based on learned proverbs, or consideration of
“good style”. The value network defines an evaluation
function on states, which either confirms or corrects
the predictions of the policy network based on the
quality of subsequent states. This is weakly analogous
to the human practice of reading out lines of play, and
then making decisions based on the predicted resulting
states.

To mimic this approach, we extracted features from
the moves of the winning player only (a common
approach in amateur Computer Go) and the subsequent
board states.



To define an evaluation function on states, we fol-
lowed the approach of past master-level bots [1] and
extracted features corresponding to the presence of
certain 3x3, 2x2, and 1x1 patterns at every separate
coordinate on the board. There are over a million such
combinations of coordinates and patterns, and though
some (such as a block of nine stones of one color) are
unlikely to appear, we hypothesized that this should
give reasonably strong behavior with respect to local
tactics. To reflect the symmetry of the board, we had
patterns share weights when identical up to horizontal,
vertical, or diagonal reflection across the center of the
board.

It should be noted that although this approach pro-
duces over a million possible features, for any given
board fewer than 200 of these indicators will be
nonzero, so computation of these features for a given
board state is not excessively expensive.

We also extracted a weak set of features from the
actions themselves (analogous to a policy network).
These features were mostly designed to get the agent
to lean towards obvious moves, and included:
• Whether or not the move leads to a direct capture;
• How many ataris (threatened captures) the move

produces;
• Whether or not the move connects two groups;
• The Manhattan distance from the previous move,

broken into separate features depending on the
number of stones on the board (to reflect the
behavior that non-local plays are more expected
in the early and late game).

Notably, unlike with TD-learning approaches, we
learned two sets of weights: one for the ”policy net-
work”, corresponding to the value of an action given
a previous state, and one for the ”value network”,
corresponding to the value of the subsequent state.
The weights were learned using gradient descent to
minimize the squared loss between our predictions and
the value of winning moves. We arbitrarily assigned a
score of 1 to winning moves, so that on every winning
action from a state s resulting in successor s’, we
applied the update rules

ws,a := η[w · φ(s, a)− 1]φ(s, a)

ws′ := η[w · φ(s′)− 1]φ(s′)

IV. PREDICTION

The base implementation of our exact version of
UCB1 operates by initializing from every state s a node

corresponding to each action a. Each of these nodes is
initialized with one win record and one loss record,
so that the UCB1 formula treats them all equally. Our
model incorporates the prior knowledge learned from
the evaluation function by simply adding to each node
φ(s, a) ·ws,a + φ(s′) ·ws′ wins (with a hard minimum
of 0.1 total wins in the case of negative dot product).
Due to the nature of UCT-MCTS, we hypothesized
that this alone would be enough to significantly affect
the performance of the agent: because this method up-
weights obvious actions and tactically strong positions
on the MCTS tree, the algorithm is allowed to spend
far more time following the ”obvious” lines of play.
Conversely, with sufficient computational power, UCT-
MCTS also acts as a safeguard against fully following
any incorrect heuristics: given enough time, the playout
history begins to outweigh the initialized wins given by
the priors, and the agent returns to making the moves
most likely to win based on the playouts.

V. RESULTS

Our agent, operating at a speed of about 10 playouts
per second, achieved an estimated skill level of 18 kyu
(low amateur). For even 9x9 Go, this is considered
decent as a first (month-or-two) attempt; for reference,
the upper bound in skill of a raw UCT agent (run-
ning at 2000 playouts per second) is estimated by
the community to be around 5 kyu. Importantly, we
observed through directly playing the agent that the
incorporation of prior knowledge through the extracted
features, which was the main interest of this project,
made a notable difference.

TABLE I
ESTIMATED SKILL OF AGENT WITH VARIOUS SETS OF

FEATURES

Both Sets of Features 18 kyu / 400 Elo
Action Features Only 23 kyu / 50 Elo
State Features Only 20 kyu / 100 Elo
Raw UCT-MCTS ≥ 25 kyu / 0 Elo

VI. PERFORMANCE DETAILS, DISCUSSION
AND FURTHER APPROACHES

This section discusses noticeable flaws with the
agent’s performance and their likely causes, and pro-
poses various potential improvements to the model. We
start by discussing computational power and move on
to discussing different approaches to feature extraction.



We also discuss some interesting potential alternate
modifications to our MCTS algorithm.

A. Testing Architecture

Currently, all estimations of the bot’s skill come from
the Go-playing judgment of its author. Standardized
formats exist that allow the bot to play against other
bots of varying strengths online, which would allow us
to gauge its performance more concretely and adjust
accordingly.

B. Raw Computational Optimization

It should be noted that a speed of 10 playouts per
second is actually extremely slow by modern standards,
and this limitation in computational power is by far
the main factor which keeps the overall performance
of the bot weak. For comparison, year-long project
Go bots often have speeds of about 2,000 per second,
high-end Go bots often reach speeds of 10,000 play-
outs per second, and top-end bots over 100,000 per
second on the 19x19 board. Our inefficiency is due
to some wasteful use of certain data structures, but
more fundamentally due to our use of Python running
on a single thread. Most serious (multiple-year-long)
Go projects are implemented in C and executed in
multiple parallel threads. With or without the features
exhibited in this project, such computational gains
would immediately massively advance the performance
of the bot. Although the focus of the project is on the
performance gains from the features and not from the
absolute strength of the bot, it would be interesting to
see whether the initial weighting helps much on a bot
which performs a larger number of playouts.

C. The Problem with Light Playouts

Light playouts are playouts for which the policy is
close to random, or at least relatively weak (in contrast
to heavy playouts, in which significant computation
is involved). In theory, the UCT-MCTS algorithm’s
policy will converge to optimal after sufficiently many
playouts. However, convergence takes a significantly
longer time for ”fragile” positions. Consider a situation,
relatively common in high level play, in which there
exists one move which is tactically far superior to
all others, but recognizing this involves reading out
a ten-move sequence of subsequent moves. In this
case, in order to recognize such a situation, the MCTS
agent must make the decision to follow the search tree
through these exact ten moves before recognizing that
the first is very good at all. In such a situation, this
can lead to the loss of a group and subsequently the

whole game. More commonly, in high-level mid-to-
endgame Go, complex tactical situations arise in which
from a given position there is one surviving (and hence
winning) move for White and 10 killing moves for
Black. While the agent might not perform so badly once
confronted with this exact board position, it is unlikely
to ever put itself into such a winning position because
it cannot predict the result during a light playout.

This behavior is a glaringly non-human weakness in
the current agent; knowingly exploiting this by con-
stantly playing into complex positions that its features
don’t immediately recognize can plummet the apparent
performance of the agent by perhaps 5 kyu. These
hurdles can be overcome with sufficient computational
power, but as with classic minimax, the main way of
coping with this problem is to decrease the effective
branching factor at each node so that the playouts
can ”carve out” this line of play quickly. This can be
accomplished to a great extent with a strong policy
net; public visualizations of AlphaGo’s thought process
show that at times over 60 percent of all playouts from
a node explore a path beginning with the same move.

D. Caching

This idea follows a simple concept: it is efficient
to use the knowledge you have previously calculated.
In particular, if a previous MCTS search has reached
the current state and calculated the values of various
actions from this state, then we can begin where the
previous calculations left off, since the calculations
from a subtree of a previous MCTS search are identical
to the calculations from the current MCTS search
(i.e, previous playouts which include the current state
necessarily contain playouts from the current state).
This effect compounds well with predicting heuris-
tics such as the one explored in this project, since
these heuristics fundamentally derive their strength
by exploring the correct branches of the search tree
to a more thorough extent. This sometimes has the
problem of being quite space-inefficient, since MCTS
trees can grow quite large, and it’s not always clear
which trees should be stored for even further use as
the game progresses (for example, in some situations
where multiple permutations of moves can result in
the same end state). However, many mid-to-high end
Go bots have such good policy networks that they
almost always get to reuse significant portions of their
MCTS tree, drastically speeding up calculations. In our
case, is likely that even naively caching the results
obtained from the previous move would increase the



performance by a small but palpable amount.

E. Dynamic Komi

One obvious and exploitable facet of the bot’s per-
formance is that it begins to play lazily whenever it has
a lead. This is because when it has a lead, most of its
MCTS playouts result in victory, causing many moves
to appear good, when in reality there might be complex
lines of play that force a loss. With dynamic komi,
the agent automatically adjusts its required threshold
for winning so that its MCTS playout win probabilities
don’t exceed a certain amount. In other words, if the
bot expects to lead by ten points, to some extent it will
try to maintain that lead through its play.

F. Bootstrapping

We tried to improve the bot’s performance by follow-
ing AlphaGos method of generating more data for the
agent to learn from by having the agent play itself in
simulated games, then following the previous approach
of learning from the winners positions. This proved to
be almost completely ineffective. One simple hypothe-
sis is that the bot is just not strong enough to produce
game records worth learning from, especially not in
comparison to the original (master-level) training set.
However, it is likely that a more important contributing
factor lies in the structure of the model itself (see next
section).

G. Narrowing the Search with Better Features through
Neural Nets

Beyond raw computational power, the model is most
fundamentally limited by the nature of its feature set.
While the features did improve the bot’s performance,
and while indeed we were able to marginally increase
the performance of the bot by introducing specific
extra features, there will always be facets of strategy
in the game that are not captured by a reasonably
sized, elementary, static feature set. Due to the fun-
damental nature of this problem, its consequences are
very pervasive- the observed benefit of UCB1, tree
caching, and more generally the use of MCTS are all
compounded by a very predictive set of features. It
should be noted that top-end Go bots such as AlphaGo
are able to thoroughly narrow down the search space
with much stronger value and action networks, devel-
oped by extracting and learning their features using a
combination of convolutional neural networks and deep
neural networks. In the long run, this style of approach
will most likely outperform any set of features that a
human could reasonably design.

H. RAVE

RAVE, which stands for Rapid Action Value Estima-
tion, is the name for a very commonly used heuristic in
mid-level Go bots [11]. In essence, RAVE approximates
the value of a move by taking the sample mean of its
observed value over all playouts. The RAVE model is
known to learn extremely fast, but are often inaccurate.
Hence, like the evaluation function developed in this
project, the values obtained from RAVE are commonly
used as priors for MCTS search in other approaches. It
may be interesting to combine this approach with our
own, e.g, by obtaining the RAVE estimates from our
evaluation function-weighted playouts.

VII. CONCLUSION

Our final AI was still quite weak in performance, but
this is largely attributable to its lack of computational
power and not generally concerning considering the
amount of time invested in its development (compared
to the years-long development of some other Go bots).
Despite being weak overall, our approach to guiding
MCTS search via tactical feature extraction was able
to demonstrate a palpable improvement over raw MCT-
UCTS without the author specifically hard-coding any
weights or concrete heuristics into the agent’s logic.
There is a large abundance of potential approaches
we can take to improve the overall performance of
this bot, but the one with the highest overall potential
and relevance to machine learning is to try extracting
features and learning the weights with neural nets
instead.

ACKNOWLEDGMENTS

• Christopher Hart, author of AncientGo, who gave
me ideas on endgame behavior;

• Jeff Bradberry, who produced the base implemen-
tation of MCTS that our code is based off of;

• Hiroshi Yamashita, for the dataset;
• Andreas Garcia and Brian Liu, members of the

related CS221 project and hence contributors to
some of the basic architecture of the project.

REFERENCES

[1] S. Gelly and D. Silver, ”Achieving Master Level Play in 9
9 Computer Go,” in Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (2008)

[2] P.Baudis, MCTS With Information Sharing, Masters Thesis,
2011

[3] Source code for Michi, one of the best minimal MCTS
Go implementations in Python. https://github.com/
pasky/michi



[4] Source code for Pachi, a popular and moderately strong MCTS
Go implementations with heavier playouts in C. https://
github.com/pasky/pachi

[5] David Silver, Aja Huang, et al., Mastering the game of Go
with deep neural networks and tree search. Nature, 06 January
2016.

[6] E.C.D van der Werf, Learning to Predict Life and Death from
Go Game Records, 2005

[7] Remi Coulom, Computing Elo Ratings of Move Patterns in the
Game of Go, ICGA Computer Games Workshop, Amsterdam,
The Netherlands, June 2007

[8] Source code for GnuGo, one of the strongest non-MCTS Go
agents. https://www.gnu.org/software/gnugo/

[9] Byung-Doo Lee, Life-and-Death Problem Solver in Go, Dept.
of Computer Science, Univ. of Auckland, New Zealand

[10] Akihiro Kishimoto, Martin Muler, Search versus Knowledge
for Solving Life and Death Problems in Go. The Twenti-
eth National Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, 2005.

[11] Sylvain Gelly, David Silver, Monte-Carlo tree search and rapid
action value estimation in computer Go Artificial Intelligence,
Volume 175, Issue 11, July 2011.

[12] Documentation on the SGF file format: http://www.red-
bean.com/sgf/ff5/m vs ax.htm

[13] Documentation on the way goproblems
builds on the base SGF file format:
http://www.goproblems.com/instructions.php3

[14] Image credit for the MCTS diagram. MCTS diagram: Mciura
[username] - CC BY-SA 3.0


