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Weather forecasting has traditionally been done by physical models of the atmosphere, which are
unstable to perturbations, and thus are inaccurate for large periods of time. Since machine learning
techniques are more robust to perturbations, in this paper we explore their application to weather
forecasting to potentially generate more accurate weather forecasts for large periods of time. The
scope of this paper was restricted to forecasting the maximum temperature and the minimum tem-
perature for seven days, given weather data for the past two days. A linear regression model and
a variation on a functional regression model were used, with the latter able to capture trends in
the weather. Both of our models were outperformed by professional weather forecasting services,
although the discrepancy between our models and the professional ones diminished rapidly for fore-
casts of later days, and perhaps for even longer time scales our models could outperform professional
ones. The linear regression model outperformed the functional regression model, suggesting that
two days were too short for the latter to capture significant weather trends, and perhaps basing
our forecasts on weather data for four or five days would allow the functional regression model to

outperform the linear regression model.

INTRODUCTION

Weather forecasting is the task of predicting the state
of the atmosphere at a future time and a specified lo-
cation. Traditionally, this has been done through phys-
ical simulations in which the atmosphere is modeled as
a fluid. The present state of the atmosphere is sampled,
and the future state is computed by numerically solv-
ing the equations of fluid dynamics and thermodynam-
ics. However, the system of ordinary differential equa-
tions that govern this physical model is unstable under
perturbations, and uncertainties in the initial measure-
ments of the atmospheric conditions and an incomplete
understanding of complex atmospheric processes restrict
the extent of accurate weather forecasting to a 10 day pe-
riod, beyond which weather forecasts are significantly un-
reliable. Machine learning, on the contrary, is relatively
robust to perturbations and doesn’t require a complete
understanding of the physical processes that govern the
atmosphere. Therefore, machine learning may represent
a viable alternative to physical models in weather fore-
casting.

Two machine learning algorithms were implemented:
linear regression and a variation of functional regression.
A corpus of historical weather data for Stanford, CA was
obtained and used to train these algorithms. The in-
put to these algorithms was the weather data of the past
two days, which include the maximum temperature, min-
imum temperature, mean humidity, mean atmospheric
pressure, and weather classification for each day. The
output was then the maximum and minimum tempera-
tures for each of the next seven days.

RELATED WORK

Related works included many different and interesting
techniques to try to perform weather forecasts. While
much of current forecasting technology involves simula-
tions based on physics and differential equations, many
new approaches from artificial intelligence used mainly
machine learning techniques, mostly neural networks
while some drew on probabilistic models such as Bayesian
networks.

Out of the three papers on machine learning for
weather prediction we examined, two of them used neu-
ral networks while one used support vector machines.
Neural networks seem to be the popular machine learn-
ing model choice for weather forecasting because of the
ability to capture the non-linear dependencies of past
weather trends and future weather conditions, unlike the
linear regression and functional regression models that we
used. This provides the advantage of not assuming simple
linear dependencies of all features over our models. Of
the two neural network approaches, one [3] used a hybrid
model that used neural networks to model the physics
behind weather forecasting while the other [4] applied
learning more directly to predicting weather conditions.
Similarly, the approach using support vector machines [6]
also applied the classifier directly for weather prediction
but was more limited in scope than the neural network
approaches.

Other approaches for weather forecasting included us-
ing Bayesian networks. One interesting model [2] used
Bayesian networks to model and make weather predic-
tions but used a machine learning algorithm to find the
most optimal Bayesian networks and parameters which
was quite computationally expensive because of the large
amount of different dependencies but performed very
well.  Another approach [1] focused on a more spe-



Number Name Value
1 Classification Clear
2 Maximum Temperature (F) 57
3 Minimum Temperature (F) 33
4 Mean Humidity 49
5 Mean Atmospheric Pressure (in)|30.13

TABLE I. Sample data from January 1, 2015, with the num-
ber, name, and value of each of the five features.

cific case of predicting severe weather for a specific geo-
graphical location which limited the need for fine tuning
Bayesian network dependencies but was limited in scope.

DATASET AND FEATURES

The maximum temperature, minimum temperature,
mean humidity, mean atmospheric pressure, and weather
classification for each day in the years 2011-2015 for Stan-
ford, CA were obtained from Weather Underground. [7]
Originally, there were nine weather classifications: clear,
scattered clouds, partly cloudy, mostly cloudy, fog, over-
cast, rain, thunderstorm, and snow. Since many of these
classifications are similar and some are sparsely popu-
lated, these were reduced to four weather classifications
by combining scattered clouds and partly cloudy into
moderately cloudy; mostly cloudy, foggy, and overcast
into very cloudy; and rain, thunderstorm, and snow into
precipitation. The data from the first four years were
used to train the algorithms, and the data from the last
year was used as a test set. Sample data for January 1,
2015 are shown in table I.

METHODS

The first algorithm that was used was linear regression,
which seeks to predict the high and low temperatures as a
linear combination of the features. Since linear regression
cannot be used with classification data, this algorithm
did not use the weather classification of each day. As a
result, only eight features were used: the maximum tem-
perature, minimum temperature, mean humidity, and
mean atmospheric pressure for each of the past two days.
Therefore, for the i-th pair of consecutive days, (9 e R?
is a nine-dimensional feature vector, where zg = 1 is de-
fined as the intercept term. There are 14 quantities to be
predicted for each pair of consecutive days: the high and
low temperatures for each of the next seven days. Let
y@ e R denote the 14-dimensional vector that con-
tains these quantities for the ¢-th pair of consecutive days.
The prediction of y® given (%) is hy(2(?) = 67z, where
6 € R4, The cost function that linear regression seeks

to minimize is
1 & , ,
0) = §lehe(af(’)) —y@|?,. (1)
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where m is the number of training examples. Letting
X € R™*9 be defined such that Xij = xéz) and Y €

R™*1 be defined such that Y;; = yj(-i)7 the value of 0
that minimizes the cost in equation 1 is

= (XTx)"'xTy. (2)

The second algorithm that was used was a variation
of functional regression, which searches for historical
weather patterns that are most similar to the current
weather patterns, then predicts the weather based upon
these historical patterns. Given a sequence of nine con-
secutive days, define its spectrum f as follows. Let
f(1), f(2) € R® be the feature vectors for the first day
and the second day, respectively. For ¢ in the range 3
to 9, let f(i) € R? be a vector containing the maximum
temperature and the minimum temperature for the i-th
day in the sequence. Then define a metric on the space
of spectra

=y [w11 fi(i)a # f2()1]
! (3)
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where w is a weight vector that assigns weights to each
feature. Since the first feature is the weather classifica-
tion and the difference between classifications is mean-
ingless, the squared difference has been replaced by an
indicator function of whether the classifications are dif-
ferent. Define a kernel

ker(t) = max{1 —¢,0}, (4)

and let neigh, (f) denote the k indices ¢ € {1,...,m} of
the k spectra in the training set that are the closest to f
with respect to the metric d. That is,

d(f9, ) < d(f9, ) (5)
for all i € neigh,(f) and j & neigh, (f), and |neigh, (f)| =

k. Furthermore, define

h= max }d(f@,f). (6)

ie{l,...,m

Then, given the values f(1), f(2) of the first two days of
a spectrum f, the remainder of the spectrum f(¢) for ¢
in the range 3 to 9 can be predicted as

f(’L) _ ZjGneighk(f ker( (f(j) f)/h)f(]) (Z)
> jeneigh, (f) Ker(d (f@), f)/h)

(7)



Training Set Year(s) ‘Test Set Year

2011 2012
2011-2012 2013
2011-2013 2014
2011-2014 2015

TABLE II. The four training sets and test sets used in the
4-fold forward chaining time-series cross validation.

The error of the estimator f is defined to be

9
Error = 3 [176) — £ 1% (8)
=3

A more useful error that will be used in lieu of this is the
root mean square (rms) error, which is defined to be

9 r- .
Bnor, = [OOSR
=3

and provides the standard deviation of the individual er-
ror terms.

EXPERIMENTAL

Since weather forecasting inherently involves time se-
ries, k-fold cross-validation is a poor technique to analyze
whether our model will generalize to an independent test
set. Instead, a 4-fold forward chaining time-series cross
validation was performed, wherein the test set consisted
of the data from the year immediately following the train-
ing set, as in table II. This method more accurately
models the weather at prediction time, since the model
is based on past data and predicts on future data. A
learning curve can also be generated, providing a useful
gauge of the dependence of the model on the training set
size.

With this in mind, the parameters of the functional re-
gression model were chosen to minimize the rms error in
equation 9 averaged over all 4 test sets in table II. The
weights we = w3 = 1 in equation 3 were chosen since
we believed that deviations in the maximum tempera-
ture and the minimum temperature should carry equal
weight. Since the functional form of the estimator f in
equation 7 was too unwieldy to perform stochastic gra-
dient descent on, an exhaustive grid search was instead
performed to optimize the other weights wq, wy, ws. Al-
ternating exhaustive grid searches over the weights w and
the number of neighbours k were performed to optimize
each of these values. An initial exhaustive grid search
was performed with large increments to obtain crude es-
timates of these weights, with the values of each weight
taken from the range 0-50 in increments of 10. The num-
ber of neighbours was taken to be k = 5. This yielded

initial estimates of w; = 20 and wy = ws = 0. wg = 0
was the optimum weight of the mean humidity presum-
ably since humidity correlates poorly with the maximum
temperature and the minimum temperature, and humid-
ity would be a more useful determinant of precipitation.
ws = 0 turned out to be the optimum weight of the mean
atmospheric pressure since there were only small devia-
tions in the atmospheric pressure which did not appear
to be correlated with the maximum temperature and the
minimum temperature. With this in mind, the mean hu-
midity and the mean atmospheric pressure were removed
as features.

The hyperparameter of the number of neighbours k
was then chosen in a similar manner, with an exhaustive
grid search over both constant values and values propor-
tional to the data set size. Values of k in the range 5-50
in increments of 5 and values of k proportional to the
data set size with proportionality constant in the range
0.05-0.50 in increments of 0.05 were considered. Taking
k proportional to the data set size greatly outperformed
taking k£ to be constant, and the optimum proportion-
ality constant was 0.10. w; and k were then fine-tuned
together with one final exhaustive grid search, taking w;
from the range 15-25 in increments of 1, and the propor-
tionality constant of k from the range 0.05-0.15 in incre-
ments of 0.05. This yielded a final value of w; = 18 and
k = 0.095|D|, where |D| is the number of data points.

RESULTS

The rms error for linear regression and the variation
on functional regression are shown in table III. The
rms error for a professional weather forecasting service
is also included in the same table. Since data regarding
the accuracy of professional weather forecasting services
in Stanford, CA were not available, the data were in-
stead taken from weather forecasts for Melbourne, VIC
by the Australian Bureau of Meterology’s Victorian Re-
gional Forecasting Centre. [8] The learning curves for
the linear regression and functional regression models are
also shown in figures 1 and 2, respectively.

Day |Linear Regression |Functional Regression | Professional
1 5.039 5.252 2.612
2 5.157 5.734 3.244
3 5.300 5.914 3.618
4 5.379 6.068 3.708
5 5.446 6.221 4.522
6 5.566 6.211 4.883
7 5.642 6.329 5.062

TABLE III. The rms error in degrees Fahrenheit for the lin-
ear regression model, the functional regression model, and
professional weather forecasting services.



Learning Curve for Linear Regression Model
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FIG. 1. The learning curve for the linear regression model,
showing the rms error averaged across all seven days as a
function of the training set size.

Learning Curve for Functional Regression Model
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FIG. 2. The learning curve for the functional regression
model, showing the rms error averaged across all seven days
as a function of the training set size.

DISCUSSION

The professional weather forecasting service consis-
tently outperformed our models across all seven days,
with a large discrepancy in earlier days and a small dis-
crepancy in later days. This was expected since the phys-
ical models of the atmosphere can be accurately solved
for short time periods, but the instability of the physi-
cal models causes errors to accumulate quickly for longer
time periods. On the contrary, machine learning algo-
rithms are robust to perturbations in initial conditions,
and over longer periods of time, perhaps our models
would outperform the professional weather forecasting
services.

The linear regression model also consistently outper-

formed the functional regression model across all seven
days, with a small discrepancy in earlier days and a large
discrepancy in later days. This is likely due to the fact
that the forecasts were made solely based on the weather
data for the past two days, which could be too short
to capture significant trends in the weather. If this were
true, then linear regression would be a better model than
functional regression since there would be no trends to
capture, and Occam’s razor dictates that the simpler lin-
ear regression model is better. If the number of days on
which the forecast is based were expanded to four or five
days, then perhaps there would be evident trends in the
weather that functional regression could capture, allow-
ing functional regression to outperform linear regression.

As expected, linear regression proved to be a low bias,
high variance model. The relatively low errors in the
learning curve in figure 1 indicate that the model is an un-
biased estimator. However, the large deviation between
the training set error and the test set error that decreases
slowly as the size of the training set increases indicates
that linear regression is a high variance model. This is
theoretically evident as linear regression is not robust to
outliers, so collection of more data would improve the
predictions of the linear regression model.

More interestingly, functional regression proved to be a
high bias, low variance mode. The relatively large errors
in the learning curve in figure 2 indicate that the model
is a biased estimator. Again, this is likely due to two
days being too short to capture any significant trends in
the weather, so our model would be a poor predictor of
future weather patterns. If the model were expanded to
predict weather based on the past four or five days, per-
haps this would suffice to capture trends in the weather,
and the bias of the model would decrease. On the other
hand, there is little deviation between the training set
error and the test set error, with the test set error being
even smaller than the training set error for a training set
with three years” worth of data. This indicates that the
model is low variance, so the model cannot be improved
by collecting more data, only by changing our model to
incorporate more days into each forecast.

CONCLUSION AND FUTURE WORK

Both linear regression and functional regression were
outperformed by professional weather forecasting ser-
vices, although the discrepancy in their performance de-
creased significantly for later days, indicating that over
longer periods of time, our models may outperform pro-
fessional ones. Linear regression proved to be a low bias,
high variance model whereas functional regression proved
to be a high bias, low variance model. Linear regression is
inherently a high variance model as it is unstable to out-
liers, so one way to improve the linear regression model
is by collection of more data. Functional regression, how-



ever, was high bias, indicating that the choice of model
was poor, and that its predictions cannot be improved by
further collection of data. This bias could be due to the
design choice to forecast weather based upon the weather
of the past two days, which may be too short to capture
trends in weather that functional regression requires. If
the forecast were instead based upon the weather of the
past four or five days, the bias of the functional regres-
sion model could likely be reduced. However, this would
require much more computation time along with retrain-
ing of the weight vector w, so this will be deferred to
future work.
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