
X-Ray Photoelectron Spectroscopy Enhanced by Machine Learning

Alexander Gabourie (gabourie@stanford.edu), Connor McClellan (cjmcc@stanford.edu),

Sanchit Deshmukh (sanchitd@stanford.edu)

1. Introduction

X-Ray photoelectron spectroscopy (XPS) is a technique

for identifying individual elements in a mixture/compound.

Samples are irradiated by X-rays and the kinetic energy of

ejected electrons is measured. Ejected electrons are captured

by a spectrometer and measured intensities are plotted versus

kinetic energy (Fig. 1). Each element appears as a series of

peaks distributed as Gaussians/Lorentzians. From these

peaks, material properties can be estimated. Current software

for XPS systems attempts, but often fails, to correctly classify

the sample. We would like to enhance this classification us-

ing machine learning (ML) algorithms.

Fig. 1: (Left) A drawing of the XPS characterization tech-

nique. (Right) An example XPS measurement. Note that Ba

has multiple peaks, each for different atomic orbitals [1].

The ultimate goal of this work is to create an algorithm

that could correctly classify any compound given an XPS

spectrum (Fig. 1). This algorithm can be separated into two

different tasks: First, Gaussians/Lorentzians are fit to the

spectrum so to extract physically significant peaks. Second,

a multi-class classification algorithm uses those peaks to

identify the compound. This report addresses the second of

the two tasks as it is better suited for a machine learning pro-

ject.

For this task, binding energies from elements/com-

pound’s XPS spectrums are used as input to multiple differ-

ent learning algorithms. These algorithms will then output a

predicted element/compound to classify the input signal. The

softmax regression, Support Vector Machine (SVM), and

Naïve Bayes multi-class models will be trained to make ac-

curate predictions. Initially, we develop algorithms to clas-

sify pure elements and follow that work with full compound

classification.

2. Related Work

For better understanding of our problem and possible so-

lutions, we looked for similar work on analyzing materials

from spectral analysis data using ML techniques. We found

that researchers tend to use SVM and Artificial Neural Net-

work (ANN) algorithms for analyzing spectral data since

both are robust classification techniques [2],[3]. However, a

ANN would require a larger training set size than we could

gather, leading us to using SVMs for our XPS classification.

We further looked at Naïve Bayes and softmax regression

because of both techniques do not inherently require large

training set sizes. Naïve Bayes has been previously used for

classification of Near-Infrared Spectroscopy, which is a sim-

ilar technique to XPS, suggesting the algorithm could be used

for XPS data classification [4]. We also found that lasso lo-

gistic regression has been used for binary classification of

spectral data [5]. However, since our problem requires mul-

ticlassification, we chose to use softmax regression as a mul-

tinomial generalization of logistic regression.

3. Data Collection and Refinement

 The U.S. National Institute of Standards and Technol-

ogy (NIST) has compiled an extensive XPS database consist-

ing of all reported XPS measurements that have been tabu-

lated in academic journals, books, and webpages [6]. This

database is public, but only available in an online entry-

searchable format not suitable for data processing. Our initial

efforts focused on aggregating all XPS information from the

database with a custom web-scraper.

Each of the 33,369 entries in the XPS database consists of

a 31-row table, where each row presents itself as a potential

feature. Since the intention of this project is to help XPS us-

ers identify elements/compounds from an XPS spectrum, and

only binding energies, peak intensities, and Gaussian/Lo-

rentzian widths of each peak can be extracted, only those

three quantities from the database may be used in our learn-

ing algorithms. Unfortunately, peak intensities and widths

are seldom provided ruling those quantities out as features.

This leaves binding energy as the only quantity we can use

in our learning algorithms.

As seen in Fig. 1, an XPS spectrum is composed of mul-

tiple peaks; however, each database entry contains only one

peak. An element/compound’s complete spectrum can still

be constructed by combining multiple different entries from

the database, although this reduces the effective dataset size.

The list of peaks for each element/compound then acts as a

feature vector for learning algorithms. Ultimately, we have a

relatively size-restricted dataset, but an alternative is not

available.

4. Methods

4.1 Algorithms

The following three learning algorithms were used to

classify elements/compounds. Different assumptions on the

input data are used but the underlying algorithms remain con-

stant.

4.1.1 Softmax Regression

Since we are trying to solve a multinomial classification

problem, a natural algorithm to choose would be the softmax

regression. The scikit-learn [7] logistic regression model im-

plements a softmax regression with the multinomial option

enabled. Softmax regression is a generalized multinomial

version of logistic regression that can classify an arbitrary

number of classes. We train the softmax regression algo-

rithm by finding the 𝑤 parameters that minimize the cost

function:

Where 𝑦(𝑖) is the classification vector for the 𝑘 number of

elements, 𝑥(𝑖) is the training parameter vector that constitutes

the peak positions of each element/compound, 𝑤 is the

learned parameter, and C is the penalty on the loss. The

scikit-learn softmax implementation automatically includes

L2 regularization in the cost function with the min
𝑤,𝑐

1

2
𝑤𝑇𝑤

term.

In our project, we used the solvers Stochastic Average

Gradient (SAG) and Newton Conjugate Gradient (Newton-

CG) for training. SAG is implemented similarly to Stochas-

tic Gradient Descent, where w is updated by iterative steps

scaled by a learning rate α/m, where m is the number of

training examples, as the 𝐽(𝑤) reaches the global minimum

[8].

The SAG learner can find a global minimum quickly in large

data sets, but it may fail with small data sets if the global

minimum is passed. Newton-CG computes the gradient of

the convex cost junction 𝐽(𝑤) to find a 𝑤 that minimizes

𝐽(𝑤).

4.1.2 Support Vector Machine (SVM)

SVMs are a popular learning algorithms for classifica-

tion. SVMs are designed for binary classification, but can be

generalized to work with multinomial classification prob-

lems through one-vs-one and one-vs-rest schemes. From the

scikit-learn package, we decided to implement the C-Support

Vector Classification (C-SVC) using two different kernels.

In C-SVC, we want to solve the following optimization prob-

lem as laid out by [9]:

min
𝜃,𝑏,𝜉

{
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑚

𝑖=1

}

where 𝑤 is our parameter, 𝐶 is a penalty on the loss, 𝑏 is the

intercept, and 𝜉𝑖 = max (0, 1 − 𝑦𝑖𝑓(𝜙(𝑥𝑖))) is the hinge loss

with 𝑦𝑖𝑓(𝜙(𝑥𝑖)) as the margin and 𝑓(𝜙(𝑥𝑖)) = (𝜃𝜙(𝑥𝑖) +
𝑏). Here, 𝜙(𝑥𝑖) maps 𝑥𝑖 into a higher dimension and is rele-

vant to our kernel choice. Since 𝜙(𝑥𝑖) can have a high di-

mensionality, the problem is usually rewritten in terms of a

kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗), but the solution is

the same. The kernels we use for our problems are a linear

kernel, 𝐾(𝑥, 𝑥′) = 〈𝑥, 𝑥′〉 (Linear SVC, Fig. 5, 7), and a

Gaussian kernel 𝐾(𝑥, 𝑥′) = exp (−|𝑥 − 𝑥′|2/𝑛) (SVC, Fig.

5, 7), where n is number of features.

 For multinomial classification, the one-vs-rest (OVR)

classification scheme trains a classifier per class, with sam-

ples of that class as positive samples, and all others are neg-

atives. The one-vs-one (OVO) classification scheme trains

𝑘(𝑘 − 1)/2 classifiers for a k-class problem. Pairs of classes

are compared and a voting scheme is used to select the best

class.

4.1.3 Naïve Bayes

We attempted a Naïve Bayes analysis of the binding en-

ergy data set to determine a classification for identifying the

element. The algorithm utilized for classifying elements from

spectra is a modification of the classic Naïve Bayes algorithm

typically used for applications like spam classification. This

modification enables multi-class classification, with multi-

variate Bernoulli feature vectors. This algorithm works well

with discrete data, with the features being Boolean valued

quantities. The Bernoulli quantities for each feature are as

described below.

The algorithm allows for a multi-class classification.

We let the classifier learn prior probabilities from the training

data for each element. This goes into the classifier determin-

ing 𝜃 vectors from the Bayesian probabilities for each class,

from each Boolean valued feature.

The decision rule for the Naïve Bayes explicitly penal-

izes for the non-occurrence of a certain input characteristic

of that class:

𝑃(𝑥𝑖|𝐶𝑘) = 𝑃(𝑖|𝐶𝑘)𝑥𝑖 + (1 − 𝑃(𝑖|𝐶𝑘))(1 − 𝑥𝑖)

In this case the feature vectors used in the training da-

taset consist of full spectra of individual elements as seen in

the NIST database.

𝐽(𝑤) = C [∑ 𝑙𝑜𝑔(𝑒−𝑦𝑖(𝑥𝑖
𝑇𝑤+𝑐) + 1)𝑘

𝑗=1] + min
𝑤,𝑐

1

2
𝑤𝑇𝑤

𝑦(𝑖) ∈ [1, 2, … , 𝑘]

𝑥(𝑖) ∈ ℜ𝑛

𝑤 ∶= 𝑤 +
α

m
∑ 𝑎𝑖

𝑘

𝑛

𝑖=1

, 𝑎𝑖
𝑘 = {

∇𝑤𝐽(𝑤) 𝑖𝑓 𝑖 = 𝑖𝑘

𝑎𝑖
𝑘−1 otherwise

𝑤 ∶= 𝑤 −
𝐽(𝑤; 𝑥(𝑖), 𝑦(𝑖))

∇𝑤𝐽(𝑤; 𝑥(𝑖), 𝑦(𝑖))

𝑝(𝑥𝑖 = 1|𝑦 = 𝐶𝑘) = 𝑝𝑘𝑖 = 𝑃(𝑖|𝐶𝑘)

𝑝(𝑥|𝐶𝑘) = ∏ 𝑝𝑘𝑖
𝑥𝑖

(1 − 𝑝𝑘𝑖)
1−𝑥𝑖

𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑖=1

Fig. 2: Feature vector generation for Naïve Bayes from

XPS peak data

1 1 1 1 0

1 0 1 0 1 1 0 1 0 0

F
e

a
tu

re
s

5

10

BE

10000

4.2 Implementations

4.2.1 Element Classification

Softmax & SVM

Our first implementation of multinomial classification

of XPS data involved using softmax and SVM algorithms to

predict elements. We assume that the XPS user provides all

peaks from 0 eV to the binding energy of their largest peak.

For training, we used the 76 elements from the NIST data-

base, with training feature vectors being the n different peak

positions for each element (ranging from 1 to 14 peaks de-

pending on the element) and training examples as the m dif-

ferent references for each peak, making the training parame-

ters 𝑥 a m×n sized matrix. To create test examples, we gen-

erated 2000 samples from randomly chosen element spectra

and added random noise ranging from 0 eV to 5 eV which is

the typical variation an XPS user will see when preforming

XPS on a new sample.

 Naïve Bayes

To generate feature vectors for the Naïve Bayes algo-

rithm as described previously, the peak data is thresholded at

some values of minimum and maximum binding energy, typ-

ical of most common XPS detector limits (in this case the

lower bound was at 0 eV and the upper bound at 1000 eV).

The dimensionality of the feature vector corresponded to the

number of divisions in the thresholded energy range for the

full spectrum. For instance (Fig. 2), if the individual energy

range was 10 eV, the entire spectrum of binding energies

consisted of 1000 eV / 10 ev = 100 features. Presence of a

peak within individual energy ranges was considered a Ber-

noulli random variable, with the probability of having a 1

corresponding to having at least one peak in that energy

range. The entire spectrum of an individual element is

mapped to a single vector. Downsides of this feature vector

construction include loss of information about relative peak

heights. This can eventually be taken into account by adding

sensitivity factor information for each element.

4.2.2 Compound Classification

Softmax & SVM

 The next logical step after element prediction was to-

wards full compound prediction. From our dataset, we found

that 6,568 different compounds were represented. Since the

number of classes we have to predict is large (k = 6,568), we

made some reasonable assumptions and a simplification to

reduce the complexity of the problem. Our assumptions are

that the XPS user is only measuring a continuous subsection

of the spectrum (Ex. Between blue lines in Fig. 3) and that

they are reporting all peak positions correctly.

The simplification can be explained through an exam-

ple. Let’s say we receive an XPS measurement as a vector of

binding energies from a spectrum. Here we get two peaks in

the energy range between the blue lines in Fig. 3. From our

set of possible elements (A, B, C), it is clear that we have

element C as it is the only element with the two peaks in the

energy range. This does not need a learning algorithm to de-

termine. If two peaks are measured in the energy range be-

tween the red lines, then it is not immediately clear which

element we measured. It is in these circumstances we employ

a learning algorithm (SVM, softmax). In general, when this

approach to is used, kactual ≪ ktotal = 6,568 and our classifica-

tion algorithm is much faster and more accurate; however,

this approach does require retraining each test example.

Fig. 3: XPS signals for hypothetical elements A,

B, & C. In between blue lines each element has

different number of peaks and between the red,

they have the same number.

5. Results & Discussion

5.1 Element Classification

Softmax & SVM

Our implementation of Softmax and SVM algorithms re-

sulted in an accurate prediction of elements from XPS data.

When training based only on a single binding energy, we

only consider lowest energy peak of each element. However,

as there is only one training data per element and some ele-

ments have peaks close to each other, the test and training

error are high (30-60%). To improve our model accuracy,

we needed to include a larger number of peaks per element.

However, we encountered the issue of a sparse and non-sym-

metric dataset, as the max number of peaks per element

ranges from 1 to 14 peaks, complicating the construction of

the 𝑥 matrix. We overcame this issue by filling in non-exist-

ent peaks for elements with the average energy peak of the

element using all the training examples. We further tuned

the learning by fixing the number of training examples for

each element peak to the average number of training exam-

ples for the whole data set. Fig. 4 shows the training and test

error after including these new conditions using the Newton-

CG solver. We saw a large decrease in both training and test

error, such that after including 4 peaks for training, the soft-

max regression learner was 100% accurate for a range of

noise during of testing. Fig. 4 shows that when incorporating

5 or more peaks our prediction model for elemental XPS data

is highly accurate even with large noise added to the test data.

𝐸𝑖 = 𝐸𝑚𝑖𝑛 + (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) ⋅
𝑖

𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑥𝑖 = {
0; 0 𝑝𝑒𝑎𝑘𝑠 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 [𝐸𝑖 , 𝐸𝑖+1]

1; 1 ≤ 𝑝𝑒𝑎𝑘𝑠 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 [𝐸𝑖 , 𝐸𝑖+1]

Binding Energy (eV)

A

B

C

Fig. 4: Test Error for Softmax Newton-CG solver with

varying training data size.

We also looked at the SAG softmax solver and SVM

models for training and predicting XPS elements. Fig. 5

shows that the Newton-CG softmax learner achieved the

lowest error while the SAG softmax learner displayed a large

test error of ~20% independent of noise. The large discrep-

ancy between Newton-CG and SAG is due to the SAG solver

failing to converge towards the global minimum. This differ-

ence between the two solvers highlights the ineffectiveness

of the SAG solver for learning on small a training example

size as the learning rate is inversely proportional to number

of training examples. The large learning rate for the SAG

then results in an “over-shoot” where the SAG solver misses

the minimum training error. Only by lowering the SAG tol-

erance to 10-8 was the learning rate decreased enough to

achieve a reasonable error of 5%, but the computation time

was much longer than the Newton-CG solver, mitigating to

main benefit of the “fast” SAG solver.

Using the SVC and Linear SVC solvers, the error rate was

lower than the SAG solver but higher than Newton-CG. We

observed lower error with the SVC solver than Linear SVC

at low noise most likely due to the more robust Gaussian ker-

nel used in SVC over the linear kernel in Linear SVC. How-

ever, at higher noise level, the linear SVC shows lower error

than SVC. This result indicates that our Gaussian kernel is

not properly tuned by hyperparameters. Since Newton-CG

already achieved satisfactory prediction accuracy, it was not

necessary to optimize any hyperparameters.

Fig. 5: Test Error for different Softmax and SVM solv-

ers when considering 7 XPS peaks.

Naïve Bayes

With the feature vectors set up as described in 4.2.1, we

train the algorithm with varying feature vector sizes. The

training set size is the total number of vectors corresponding

to full peak spectrum for each element from each reference.

The feature size is varied from 10 to 10000, corresponding to

a change in the feature energy range from 100 eV to 0.1 eV.

We see that Naïve Bayes always performs better than ran-

domly guessing the most probable element (viz. has less than

88% error). The implementation of the algorithm with feature

size of 200 (corresponding to feature energy range of 50 eV)

shows lowest training error of ~ 24% (Fig. 6 (a)). This indi-

cates that to distinguish one element from the other, most im-

portant XPS signatures are contained in distinct 50 eV bins,

across the set of all elements in the periodic table. We per-

formed K-fold cross validation with the trained classifier.

The training data was shuffled and divided into subsets for

cross-validation. The post cross-validation test error re-

mained below 30% for feature vector sizes of 200 (Fig. 6

(b)). This indicates low variance for the Naïve Bayes training

algorithm for the selected feature size. This also indicates that

most of the information from individual element spectra is

contained in the minimal subset of spectra containing all ele-

ment data.

0 1 2 3 4 5
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Noise Level (eV)

T
es

t
E

rr
o

r
(%

)

1 peak
2 peaks

3 peaks

5 peaks

4 peaks
6 peaks

7 peaks

0 1 2 3 4 5
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Noise Level (eV)

T
es

t
E

rr
o

r
(%

) SAG
Linear SVC (OVR)

Newton-CG

SVC (OVO)

20

30

40

50

60

70

80

10 100 1000 10000

T
ra

in
 E

rr
o

r
(%

)

Number of features

20

25

30

35

40

1 10 100

T
es

t
E

rr
o

r
(%

)

Number of subsets

(a) (b)

Fig. 6 (a): Train error for Naïve Bayes with changing feature vector sizes; (b): Test error

with K-Fold Cross Validation for the test set, K varying from 2 to 1000.

5.2 Compound Classification

Softmax & SVM

As was the case for the element prediction, training data

for compounds was not readily available so test cases were

created by adding randomly adding noise to spectra of ran-

domly chosen compounds. The resulting binding energy vec-

tor was then passed to the prediction algorithms. Our primary

and only metric of performance is the overall accuracy of the

prediction, ignoring compound specific metrics. Other visu-

als or quantities, such a confusion matrices, precision and re-

call metrics, and AUC curves, are not included because they

would be ineffective due to the large number of classes we

have to represent.

 To test the default effectiveness of our learning algo-

rithms, we ran ≈60,000 test cases for each of the softmax

(solvers: Newton-CG, SAG) and SVM (linear SVC (OVR),

SVC (OVO)) variations. The results can be seen in Fig. 7.

The test cases pass 1-28 peaks (13 shown) to the model and

we see that the test error decreases with increasing number

of peaks. This happens for two reasons: First, the use of more

peaks shrinks k in the k-class classification problem because

more compounds are removed from the possible outcome list

due to the simplification described in 4.2.2. Second, having

more peaks means the feature list is larger, improving the

uniqueness of the XPS signature. Overall, the best perform-

ing learning algorithms are Newton-CG and SVC (OVO)

which have very similar test error curves. The SAG method

performs poorly here because our dataset is too small [8]. De-

scribed in [10], the linear kernel is a special case of the

Gaussian kernel meaning linear SVC will not be more accu-

rate than a properly tuned SVC (i.e. Gaussian kernels are gen-

erally more accurate). While the linear kernel SVM was fast,

it did not predict compounds as accurately as other methods.

 In both the softmax and SVM algorithms, there is an

adjustable hyperparameter 𝐶 (see section 4.1) which penal-

izes the loss. We decided to forgo optimizing this hyperpa-

rameter for compound classification as we retrain the model

each test case and did not want to incur heavy computation

penalties.

Fig. 7: Total test error of the compound prediction algorithm

for multiple different learning algorithms.

Lastly, we must address the large test error for a single peak.

Upon inspection of training sets for a single peak, there are

generally multiple compounds with peaks either equal or

very close to each other making it virtually impossible to

train an effective model. The general advice we would give

to a user of this XPS classification algorithm would be to pro-

vide the algorithm with at least four peaks.

6. Conclusion & Future Work

The goal of this project was to classify compounds from

an XPS spectrum given binding energies corresponding to

peaks. We addressed the problem using softmax, SVM, and

Naïve Bayes machine learning algorithms. Inputs were bind-

ing energies and outputs were the classified element/com-

pound. For the elemental classification, we found Newton-

CG to correctly predict all elements even with up to 2 eV of

noise added to each peak. SVMs, both with linear and Gauss-

ian kernels, could also classify elements without error, but

were more sensitive to noise.

For compound classification, Newton-CG and the Gauss-

ian kernel SVM gave the highest accuracy predictions. Ac-

curacy improved as more XPS peaks were input to the algo-

rithm with an error down to ≈20% if more than three peaks

are used. A future improvement would be to optimize the hy-

perparameter 𝐶 for each method, resulting in excess compu-

tation but higher accuracy

For Naïve Bayes, the current approach lets us classify sin-

gle elements from their spectra with test error as low as

≈24%. This can be expanded upon by doing a complete

multi-label classification from a combined realistic XPS

spectrum. While Naïve Bayes can be built upon (with OVO

or OVR like approaches), future work can consider using de-

cision trees for spectra classification with multi-labels.

This project was ultimately data limited. While the NIST

database provided binding energies of XPS peaks, additional

features such as peak intensities and Gaussian/Lorentzian

widths must be included for accurate compound prediction.

Peak intensities and widths can be gathered from current ex-

isting XPS spectra for all compounds, but not without signif-

icant time and effort. Additionally, there were many ele-

ments/compounds with little published information making

them difficult to classify. Extra data collection for these

could strengthen the dataset.

Overall, our machine learning algorithms successfully

predicted elements and performed reasonably well for com-

pound prediction despite any dataset limitations.

2 4 6 8 10 12
0

20

40

60

80

100

Peaks Passed To Model

T
es

t
E

rr
o

r
(%

)

Stochastic Average Gradient

Linear SVC (OVR)

Newton Conjugate Gradient

SVC (OVO)

References

[1] T. F. S. Inc, "Thermo scientific XPS: What is XPS,"

2013. [Online]. Available: http://xpssimpli-

fied.com/whatisxps.php. Accessed: Dec. 17, 2016.

[2] T. Zou, Y. Dou, H. Mi, J. Zou, and Y. Ren, "Support

vector regression for determination of component of

compound oxytetracycline powder on near-infrared

spectroscopy," Analytical Biochemistry, vol. 355, no. 1,

pp. 1–7, Aug. 2006.

[3] M. Madden and T. Howley, "A machine learning appli

cation for classification of chemical spectra," in Appli-

cations and Innovations in Intelligent Systems XVI.

Springer London, 2009, pp. 77–90.

[4] M. Blanco and J. Pagès, "Classification and quantitation

of finishing oils by near infrared spectroscopy," Analyt-

ica Chimica Acta, vol. 463, no. 2, pp. 295–303, Jul.

2002.

[5] D. Yu, S. J. Lee, W. J. Lee, S. C. Kim, J. Lim, and S.

W. Kwon, "Classification of spectral data using fused

lasso logistic regression," Chemometrics and Intelli-

gent Laboratory Systems, vol. 142, pp. 70–77, Mar.

2015.

[6] "NIST x-ray Photoelectron spectroscopy (XPS)

database, version 3.5," 2012. [Online]. Available:

https://srdata.nist.gov/xps/. Accessed: Oct. 1, 2016.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.

Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, E. Duchesnay, "Scikit-

learn: Machine learning in Python", J. Mach. Learn.

Res., vol. 12, pp. 2825-2830, 2011.

[8] M. Schmidt, N. Le Roux, and F. Bach, "Minimizing fi

nite sums with the stochastic average gradient," Mathe-

matical Programming, Jun. 2016.

[9] C. Cortes and V. Vapnik, "Support-vector networks,"

Machine Learning, vol. 20, no. 3, pp. 273–297, Sep.

1995.

[10] S. S. Keerthi and C.-J. Lin, "Asymptotic behaviors of

support vector machines with Gaussian kernel," Neural

Computation, vol. 15, no. 7, pp. 1667–1689, Jul. 2003.

