
CS 229 Final Project:

Using Reinforcement Learning to Play Othello

Kevin Fry ID: kfry
Frank Zheng ID: fzheng
Xianming Li ID: xmli

16 December 2016

Abstract—We built an AI that learned
to play Othello. We used value iteration
on a value approximation function in
combination with minimax tree search
with alpha- beta pruning. The
performance of our four-feature linear
value approximation function stands out
above all other strategies in terms of win
percentage.

1 Introduction

Othello is a two person game played on an 8 by
8 board with 64 pieces that are black on one
side, and white on the other. Each player is
assigned a color, black or white. Starting with
four pieces in the middle of the board, two
white and two black, players take turns placing
pieces on the board. A legal move must be
adjacent to other pieces on the board, and be
placed such that it flips over at least one piece
(Fig. 1). A piece is flipped over if it is between
a piece just placed by a player and another
piece of that player’s color. The game ends
when neither play has a valid move left, and the
winner is the player with the most pieces of
their color on the board. See the Wikipedia
page for more information.

Figure 1: The valid moves for black

As in most reinforcement learning applications,
our problem has a state space (the different
configurations of the board), actions the player
can take in a given state that cause a transition
from one state to another (the valid moves for a
player given a board configuration). Thus it is
natural to use reinforcement learning
algorithms to create our agents.

In our final agent, we use minimax with a value
approximation function to play the game.
Minimax is discussed in the next section. Our
value function is a linear function of four board

1



heuristics.

2 Game playing and GUI

We built a GUI to display the game and a
python program to allow us to play the game.
The game is represented as a two dimensional
8× 8 array. A 0 represents a blank square, a 1
represents a white piece, and −1 a black piece.
The python program can take in player input
for placing a piece, calculate all valid moves for
a player, and properly update the board when a
move is taken, including flipping over pieces.
After each move, the array is interpreted and
displayed in a GUI to make it easy to see the
state of the game and how it progresses (Fig.
2).

Figure 2: Example of our GUI

3 Minimax Heuristics

As a two-player deterministic zero-sum game
with perfect information (both players know all
previous moves at any given state of the game),
Othello is suitable for the minimax algorithm,
which provides a reliable way to converge upon
the optimal solution, given enough allocated
time and space.

The idea of minimax is built on top of the
concept of decision game trees, which makes
use of the concepts of state space and move
space of the game board. The state, st, at any
given time t is the configuration of pieces for
both players on the board at that time, and the
move space, m(a, p), is the set of all possible
next moves/actions, a, for any given player p.
The game tree starts at the root s0, which is
the starting configuration of the game, and
branches down to all possible state for each
possible move choice for the current player,
alternating moves between players. This
procedure develops down the tree, until the
entire state space for the board has been filled.
At this point, the set of leaves at the bottom of
the tree would constitute all possible
winning/losing positions for the players. Each
path from the root to a leaf would signify an
entire game.

In order to make a move at each branch for the
minimax, a criterion called the evaluating
function is employed. The evaluating function
takes the form, f : S → [m,M ], where S is the
set of all possible configurations of the board,
m is the minimum possible score for a player,
and M is the maximum possible score for a
player. Without loss of generality, naming one
player the maximizing (MAX) and the other
player the minimizing (MIN), the goal of
minimax would then be for the MAX to achieve
M and for the MIN to achieve m.

3.a Minimax Considerations

Due to the nature of the game tree, if we
assume the branching factor (number of
possible moves per turn) is 6, and that there
are about 55 turns for both players combined,
propagating minimax entirely down to the
leaves would require 655 > 1042 static
evaluations, which takes considerable time and
space.

To tackle this problem, we create an insurance
policy in which, given time constraints, at some
level d down the tree that may not be the
leaf-level, we assume that level to be an

2



approximation state of the leaf level. We then
run the evaluation function on the nodes at this
level and backtrack minimax up the tree. In
addition, we plan to also take advantage of the
αβ-pruning technique which optimizes minimax
search space by avoiding completely traversing
down certain branches where we know fairly
quickly that the optimal solution would not be
found there. In doing so, we may be able to
look ahead several more levels in a given
amount of time and generate more accurate
evaluations.

4 Discussing Heuristics

All heuristics discussed below are done so from
the perspective of playing as the black player.

4.a Frontier Disks

Frontier disks are the pieces that are adjacent
to open spaces. These disks are often volatile
because they are easily flipped back and forth
between the two players. Therefore, it is
intuitive that we try to minimize these pieces
for ourselves and maximizing them for the other
player so that we have a solid base of pieces.
To calculate this function, denote the number
of frontier disks of black Bf , and the number of
frontier discs of white, Wf . If Bf > Wf , then
the frontier discs score is

f = −100
Bf

Bf +Wf

If Bf < Wf ,

f = 100
Wf

Bf +Wf

And 0 if Bf = Wf .

4.b Mobility

This measures the number of moves available at
a time. Running out of moves is bad because it
gives the other player an extra turn. Thus, we
will try to maximize our own mobility and
minimize the other players mobility. Denote
Bm the number of available black moves, and

Wm the number of available white moves. For
Bm > Wm the mobility is

m = 100
Bm

Bm +Wm

If Bm < Wm

m = −100
Wm

Bm +Wm

And 0 if Bm = Wm.

4.c Piece Difference

This measures the difference between our own
pieces and those of the other players. We try to
maximize this number as one of our heuristics,
because ultimately, the objective of the game is
to have more pieces than the opponent at the
end of the match. Let Bp be the number of
black pieces, and Wp the number of white
pieces. If Bp > Wp, then p is given by

p = 100
Bp

Bp +Wp

If Bp < Wp

p = −100
Wp

Bp +Wp

And 0 if Bp = Wp.

4.d Value Matrix

The value matrix is a matrix that we generated
with reinforcement learning to determine which
spaces in the board are more or less valuable to
have. Intuitively, we thought of this heuristic
because we knew that corner pieces are
extremely valuable in Othello because once
occupied, they can never be flipped to another
color. In this sense, we also can conclude that
spaces adjacent to corner pieces are bad,
because they allow a way for the other player to
occupy corner pieces. With this in mind, we
designed an agent that learned a value matrix
which gave values to each space on the board.
Since the board quadrants are symmetric,
below we only give the value matrix V for the
upper left quadrant:

3



V =


3.2125 1.775 1.875 1.975
0.15 2.3 0.6625 1.8375
3.525 0.85 2.675 0.175
1.125 1.95 0.15 0


A score is calculated from this matrix by
adding the matrix value for each space of the
board occupied by black, and subtracting the
matrix value if it is occupied by white.
Formally, the matrix score s is

s =
8∑

i=1

8∑
j=1

f(i, j)V (i, j)

Where f is defined as

f(i, j) =


1 if black

−1 if white

0 otherwise

The value matrix was computed through the
method listed below:

1. repeat for 10000 iterations:

2. Initialize every value of board to 0.

3. Based on the decreasing exploration rate ε,
either make the optimal move using the
current value matrix, or make a random
move

4. For each move, record it in a moves array.

5. At the end of the game, add a 1 to the
value grid matrix for each move in the
moves array if black won. Subtract a 1 to
the value grid matrix for each move in the
moves array if black lost.

4.e Training Our Weights

Algorithm:

1. repeat until convergence:

2. Randomly initialize weights θ.

3. Every ten iterations update training
opponent θopp = θ (First ten iterations,
opponent is value matrix agent)

4. Based on exploration rate ε, either make
the optimal move using current value
function, or make a random move

5. For each move, record the board value v
using current weights and feature vector f ,
and the corresponding minimax score v′

6. θ := α(v′ − v)f

5 Benchmark Agents

We implemented several other agents as
benchmarks to test our final agent against.
First we built an agent that makes a random
choice as a baseline to test all other agents
against. We also implemented two piece
difference agents: one that greedily tried to
maximize the number of pieces of the current
turn, and another that used a minimax of
depth 3 to determine which move to make.
Finally, we implemented an agent that used a
value matrix that we found online, developed
by Korman, a researcher who worked on
Othello(1). His matrix was determined
experimentally, and we used this matrix in two
ways: one as a greedy value matrix that only
accounts for the current state of the board, and
another which uses a minimax of depth 3.

Figure 3: Win Rates vs. Value Matrix With
Different Training Opponents

Fig. 3 shows how these basic agents stacked up
against each other. As shown in the figure, the
value matrix and piece difference with minimax
agents were the best of our benchmark agents.

4



6 Results

Below are the results of our final agent. Figure
4 shows the results of different training
opponents and Figure 5 shows the win rates
against our benchmark agents. Finally, Figure
6 shows the learning rate of our final agent
until convergence.

Figure 4: Win Rates vs. Value Matrix With
Different Training Opponents

Figure 5: Final Agent Win Rates

Figure 6: Final Agent Learning Rate Over Iter-
ations

7 Discussion

Our final agent performed well against the
agents that we tested it against. It performed
extremely well against the random agent and
the two piece difference agents (greedy and
minimax). It also performed well against the
greedy Kormans value matrix, although it was
unable to beat the minimax Korman matrix.

It dominated against the random agent, because
as in most board games, playing randomly is
not a great strategy. However, it is noted that
the random agent wins about 5% of the time,
because playing randomly is actually not a
terrible strategy (random agent actually wins
against piece difference agent 57% of the time).

Our agent also won handidly against both piece
difference agents, because the piece difference
agents fail to account for the fact that many of
its current pieces can be flipped in the future.

Finally, it worked well against Kormans value
matrix when the agent was only using a greedy
current-state look, but it failed to win most of
its games when the Korman matrix used
minimax of depth 3. We think that this can be
attributed to the fact that Korman’s value
matrix was determined experimentally. Because
of this, he was able to put his own biases and
knowledge about the game into his value
matrix. On the other hand, our matrix,

5



generated as described in 4d, simply added or
subtracted 1 from a position based on if the
winning player played that position. Since this
method values every move equally, it struggles
differentiate between genuinely valuable moves
and those that just happened to be played by
the winning player. Also, though we failed to
beat the Korman matrix with minimax of
depth 3 handidly, we only lost around 60% of
the time, which is not terrible by any means.

8 Future Extensions

8.a Neural Network for Value
Approximation

Currently, we use a linear value approximation
function. The agent might work even better
with a neural network to approximate the value
function. We had planned to implement this
ourselves, but because of time constraints
(exams) we were unable to make good on these
plans. The following details how one would
implement this in future work.

We would use an artificial neural network, with
one hidden layer and each node being a
perceptron or sigmoid function. The input
would be the board, which would feed into 64
input nodes, these input nodes would be fully
connected to all hidden layer nodes (two-thirds
of the input number should be appropriate),
and these hidden nodes would all be connected
to an output node.

At the start of training, we would randomly
initialize weights and thresholds for the neural
network. For training, we would feed it many
examples (thousands of examples even) of
board positions obtained from simulated games
using the linear value approximation agent. For
each input board position, the signals would be
propagated through the neural network to
produce an output. Then by providing the
neural network with the scoring assigned by the
linear approximation agent, back propagation
can be used to tune the weights and thresholds
of the network.

Once a network had learned to play at the same

level as the linear approximation agent, we
could then train neural networks against each
other. Both neural nets would be initialized
with the weight and threshold values found for
the first neural network. In this case, the
networks would play games until the end, with
scores given based on how quickly they
won/lost; highest scores for winning quickly,
and lowest scores for losing quickly. Then these
scores could be used for back propagation to
update both agents. Hopefully this would result
in agents that learned to play even better than
the original neural network.

Another approach, possibly less appealing
because of its potentially long training time, is
a genetic algorithm to select the weights and
thresholds for a neural network. The process
would involve 100 neural networks, most
initialized with random values, and some
initialized with values from the first neural
network. These agents would then play against
each other in a round-robin tournament. At the
end of each generation, we would keep the top
performers, discarding the rest. We would then
create copies of these top performers, and
mutate these copies to create 100 neural
networks for the next generation. Then the
process would repeat. The process would
terminate when mutations were no longer
providing improvement. This would be
determined by periodically playing the best
performer of the latest generation against some
benchmark agent (e.g. random or greedy piece
difference), to ensure real improvement is
actually occurring.

8.b Feature Selection

Another way our project can be improved is
through our selection of features/heuristics. We
experimentally chose the four heuristics used
here, but future work should come up with
more heuristics and use forward or backward
search feature selection to determine the
optimal number and combination of heuristics
to use as features in the linear value
approximation function.

6



8.c Deep Learning

Finally, another way to improve on our project
is using Deep Learning instead of our current
model. Deep Learning would mean that it
would essentially come up with its own features
instead of the heuristics that we came up with
ourselves for this project. This way, the model
would be free of our own biases as to what
moves and what heuristics are good or bad.

References

[1] M. J. Korman, “Playing othello with
artificial intelligence,” 2003.

[2] J. van Eck and M. van Wezel, “Application
of reinforcement learning to the game of
othello,” 2008.

[3] V. Sannidhanam and M. Annamalai, “An
analysis of heuristics in othello,” 2015.

7


