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Abstract—In 2016, DeepMind announced a deep neural
network-based, generative model [1] of audio waveforms which
led to never-before-seen text-to-speech (TTS) and speech recog-
nition accuracy. The model, WaveNet, is a convolutional neural
network framework which uses blocks of dilated causal con-
volutions with residual and skip connections to make learning
from raw audio and generating waveforms tractable. Using the
model, DeepMind was able to generate highly realistic speech
from text and recognize words with unprecedented accuracy.
In our project, we aim to utilize the WaveNet model toward
speech audio enhancement by using the framework to build
an application which can recover degraded speech audio. This
is a novel approach to speech audio enhancement which we
believe could rival other sophisticated techniques with sufficient
engineering and optimization. We build a prototype of the
speech enhancer called WaveMedic by heavily re-purposing the
TensorFlow-WaveNet implementation of the WaveNet waveform
generator [2], and find that our enhancer is able to learn
to recover audio which has suffered a variety of degradations
without ever being programmed explicitly to do so.

I. INTRODUCTION

Although voice telephony bandwidth has been gradually
increasing with time, many of todays speech transmission
systems still use a highly compressed representation of voice
audio data which noticeably degrades the perceived quality of
the received voice signal to human listeners. Typically, these
systems sacrifice details in the spectrum above approximately
4-8 KHz, resulting in lossily-compressed speech which
may be considered intelligible but which requires additional
listening effort. [3] Historically, one popular approach to
improving the faithfulness of low-bandwidth voice codings
has been the inclusion of quantized high-band formant power
and phase information paired with a more detailed low-band
signal (e.g. [4]). In this type of approach, the receiver
decodes the formant information, resynthesizes it in the time
domain, and superimposes it onto the low-band signal using
techniques such as those presented in [5]. More recently,
there have been efforts to improve the perceived detail in
the high-band by applying artificial bandwidth extension
(BWE) to narrow-band voice codings. [6] [7] Modern BWE
techniques commonly integrate learning-based algorithms in
which bandwidth extension is applied in a predictive manner,
such that the one-to-many mapping from narrow-band to
wide-band produces relatively accurate reproductions in
the high-band( [8]). However, there are known limits to
the performance of these techniques, and certain types of
unnatural artifacts are still introduced in their processes, such

as frequency distortion and whistling [3] [9], so a novel
approach toward post-processing narrow-band voice codings
is to be desired.

In our approach to speech audio enhancement, we
deemphasize the frequency domain and instead attempt
to correct the raw, time-domain signals of the degraded
audio. We build upon Google DeepMinds recently-released
WaveNet, a convolutional neural network model originally
designed as a framework for text-to-speech synthesis. In
our project, we adapt WaveNets toward the purpose of
reconstructing high-quality voice audio from degraded signals
by training the WaveNets on synchronized clean and degraded
audio waveforms, then repurpose the WaveNet generator to
perform audio enhancement. Once trained, the input to our
application is the degraded audio and the degradation type,
while the output is a prediction of the original, non-degraded
audio. With this prototype – which we call WaveMedic – we
experiment with enhancing audio which has suffered from
various degradations, and find that WaveMedic is capable
of correcting low-frequency waveform characteristics and
removing some warbling artifacts in degraded audio, but it
introduces a significant amount of noise which we attribute
to limited training and model sizes. In this report, we provide
the details of our experiments and the results we find therein.

II. WAVENET FOR AUDIO ENHANCEMENT

A. Background: DeepMind’s WaveNet (2016)
DeepMind’s WaveNet is a convolutional neural network

(CNN) model originally designed for TTS synthesis. However,
the creators indicated that the model is much more general.
In this project, adapt WaveNets to reconstruct high-quality
voice audio from degraded recordings.

At its most basic, WaveNet is a generative model that
operates directly on time-domain audio data. It predicts the
conditional probability for the value of an audio sample in
one timestep t given phonetic context h(t) and the audio
amplitudes in previous timesteps (x1, . . . , xt−1) by

yt = argmaxx′
t
p(x′t|h(t), x1, . . . , xt−1).

During training, the distribution of p(x′t|...), is compared to
the ground truth xt. The error in the prediction processed
and subsequently passed back to the network through
backpropagation. After being sufficiently trained in this
manner, the network can generate realistic speech sounds by
seeding x1 and proceeding providing the phonetic contextual
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Fig. 1. Training a WaveNet for Speech Audio Enhancement

input h(t) to predict x2, x3, etc.

B. Adapting WaveNet for Audio Enhancement

To apply WaveNets to speech audio enhancement, we alter
its training and generation scheme so that it is no longer
dependent on the phonetic information h(t), but instead our
model learns to predict non-degraded audio provided only the
degraded audio waveform. The steps of our process are as
follows:

1) Preparing a Training Set: Before training our model, we
create a training set which emulates the degradations
which we are trying to recover from. In our experi-
ments, we use a large corpus of high-fidelity English
speech as the ground truth and render a copy of it with
some destructive effect applied (e.g. clipping, low-pass
filtering, etc.) as the ”degraded” version.

2) Training the Model: To train our model, we provide
an instance of WaveNet with a window of degraded
audio and consider its output to be a prediction of the
non-degraded audio at the rightmost (i.e. most latent)
sample. Since at training time we have access to the
non-degraded audio, we can evaluate its prediction us-
ing a loss function and use this result as a training step.
That is, the loss is back-propagated into the network and
the process is repeated many times until the predictions
become sufficiently accurate.

3) Enhancing Degraded Audio: To enhance degraded au-
dio, we first apply degradation to a piece of non-
degraded audio to simulate it undergoing real degra-
dation. Then, we use our trained WaveNet instance
to draw predictions for each sample of what the non-
degraded sound is most likely to be.

The training and enhancement steps of this process are ex-
pressed graphically in Figures 1 and 2.

Fig. 2. Enhancing Audio With a Trained WaveNet

III. EXPERIMENTS

A. The Training and Test Sets
To enhance generic speech audio, it is important to train the

TensorFlow-WaveNet model using corpora with high-quality
recordings of a wide variety of speakers. A particularly useful
corpus for this purpose is the VCTK corpus produced by The
Centre for Speech Technology Research at the University of
Edinburgh. [10] For the purposes of evaluating our prototype,
we select the recordings of an individual speaker from VCTK
to make training times more tractable. For the downsampling
and MP3 experiments, we select certain recordings from within
the speaker’s corpus to be withheld from the training set for
use as test data. For the clipping and low-pass experiments, we
use test audio from a different speaker with a similar accent.

B. Creating Degradations Artificially
Since our training model uses both degraded and non-

degraded versions of the inputted speech recordings,
it is imperative that we select degradations which are
representative of those which would be encountered in real-
world applications. In many cases, degradation is the result
of destructive voice codings (e.g. narrow-band encoding) or
recording artifacts (e.g. clipping).

Given the technical complexity of WaveMedic, our first
experimental degradation was designed as a quick ”sanity-
check” – a distortion function with the I/O characteristic given
in Figure 3. Since we attain encouraging results with this
distortion (”light clipping”), we also apply an even heavier
distortion with a slightly steeper curve at the origin, which
we call ”heavy clipping”.

We next emulate lossy data compression by applying unin-
terpolated downsampling to the corpus. While this is not pre-
cisely representative of actual voice compression algorithms, it
serves as our initial demonstration of WaveMedic’s ability to
reconstruct lost data. To accomplish this, we apply a 5x down-
sampling following function, which serves to downsample our
48KHz input to 9.6KHz:
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Fig. 3. Light clipping function: amplitude characteristic

xt := xi

∣∣i = b t−15 c · 5.
Next, we experiment with frequency distortion as an audio

degradation by applying a 10th-order Butterworth filter with
a cut-off frequency of 2KHz. Upon examining spectrograms
produced from this degradation, we clearly see the loss of
the sibilance and high-pitched resonant tones in the speaker’s
voice.

For our final experiment, we lossily compress the speech
audio with the LAME MP3 encoder using a bit rate setting of
8 kbps, resulting in a 96x reduction in the corpus file size. At
this bit rate, we find the speech to be intelligible but requiring
significant listening effort. The spectrum is still very detailed,
but there are some obvious warbling artifacts, and certain
features of the speech (such as sibilance) are muddied.

C. Configuring WaveMedic’s WaveNet Instance

WaveNets are flexible in that the number of layers and the
magnitude of the dilations (see [1]) can be adjusted before
training time. Additionally, we adjust the sampling rate and
depth of the audio to the settings matching those of [1] such
that the training and generation are more computationally
feasible. For the downsampling recovery tests, we operate at
the full 48 KHz to mitigate aliasing errors – otherwise, we
work at 16 KHz. We find that with a NVIDIA GRID K520
GPU with 4096 MB memory supporting the TensorFlow
backend, our training time ranges from 5 to 10 hours
depending on the number of training steps (i.e. the number of
batches processed). With this training time, our loss function
– a cross entropy of the distribution of the predicted amplitude
with a one-hot encoding of the ground-truth – appeared to be
approaching a plateau. The reader may find it useful to know
that enhancements with our prototype run at approximately
1% realtime. In summary, for our experiments, we use the
following parameters:

Sample rate 16 KHz or 48 KHz
Receptive field size 3069 samples
Amplitude quantization 256 levels (via mu-law)
Training steps 5,000 or 10,000
Residual channels 32
Dilation channels 32

D. Evaluating WaveMedic’s Performance
When evaluating the performance of WaveMedic, we focus

on three metrics:

1) Pearson’s r: Pearson product-moment correlation co-
efficient, the statistical correlation between two time-
domain waveforms; equivalent to Euclidean distance
between normalized waveforms. We report r2. Higher
is better.

2) LSD: Log-Spectral Distortion in decibels, the root-
mean-square (RMS) difference between the logarithms
of two power spectra. We compute this for 20ms frames
and then take the RMS over time. Lower is better.

3) PESQ: Perceptual Evaluation of Speech Quality, a
metric used in telecommunications for estimating the
perceived quality of speech audio. Five-point scale
(MOS-LQO). Higher is better. See [11].

IV. RESULTS

In this section, we narrate our findings for each of the
experiments individually, then summarize them in a table
which lists our numerical findings for each experiment. The
details of the setups for each experiment may be found in the
Experiments section.

A. Recovering from Clipping
When we train WaveMedic to enhance clipped audio, we

find that it performs surprisingly well in recovering the general
shape of low-frequency time-domain signals. However, it
could not accurately predict and reproduce the high-frequency
spectrum. Figure 4 shows a slice of audio which has been
artificially degraded using the light clipping function. It is then
enhanced using WaveMedic, producing the waveform seen at
the bottom of Figure 4. While WaveMedic has little difficulty
recovering the low-frequency information of the original
waveform, it is not capable of superimposing a reasonable
expectation of the high frequencies in the sound, and thus
it produces faint white noise of varying intensity in place
of the true harmonic tones. From this experiment, we can
infer that the degradation may be too severe for WaveMedic
to attempt to recreate the high-frequency harmonics which
were found in the original sound. We find similar results with
heavy clipping, and the differences between the light and
hard clipping are mostly found in the quantitative analysis
from the two experiments (which we provide later in Section
IV-E). We do find that the accuracy improves (as measured
by r2 and LSD), and the perceived quality (as assessed by
PESQ) improves for light clipping but not heavy clipping.
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Fig. 4. Recovering from a clipping degradation

As a comparative reference, we also apply an off-the-
shelf purpose-built declipper on the degraded sound. The
selected declipper is the Audacity Clip Fix plug-in (see
[12]), which attempts to recover the audio by interpolating
audio samples which have been destroyed by the clipping.
This plug-in has higher LSD and PESQ than WaveMedic,
but has worse time-domain accuracy (r2). Subjectively,
WaveMedic and Audacity repair light clipping comparably
well, with different kinds of artifacts present. At heavy
clipping, WaveMedic’s output sounds significantly better.
PESQ indicates that the heavily-clipped audio is better than
either recovered version, which is strongly contradicted by
our subjective assessment.

B. Recovering from Downsampling

When we use WaveMedic to recover uninterpolated-
downsampled audio, we find that it adds a significant amount
of noise to the time-domain signal, which we believe is the
result of insufficient training on a corpus which is too small
with a model which is too small (i.e., there is a significant
noise component in the predictions), particularly since this
test ran at 48 KHz. In the spectrogram (see Figure 5), we
find that WaveMedic does act to filter out many of the
high-band distortions which arise from the uninterpolated
downsampling, but this behavior could be reproduced with a
simpler low-pass filter; WaveMedic again fails to reconstruct
high-frequency structure. We do find it interesting, however,
that WaveMedic learned to behave like a noisy low-pass filter
(attempting to interpolate the uninterpolated samples in a
stochastic dithering-like fashion).

The Pearson r2 for the degraded recording is very high, and
decreases slightly for the WaveMedic output in this test, while
the LSD improves moderately. This is consistent with a small
frequency-domain improvement over the degraded audio.

Fig. 5. Recovering from downsampling. Top: original, middle: degraded,
bottom: enhanced. The lower end of each spectrogram corresponds to the
low-frequency bands.

From a subjective standpoint, we find that the WaveMedic
output sounds much better than the degraded audio, but is
not comparable to the original quality and still contains some
buzzing.

C. Recovering from Low-Pass Filtering

In our next experiment, we investigate WaveMedic’s abil-
ity to recover audio which has been degraded by low-pass
filtering. The filter used is a 10th-order Butterworth filter
with a cut-off frequency of 2KHz. The cut-off was chosen to
remove significant voice frequencies, rather than subtle details.
Quantitatively, the accuracy r2 decreases by a greater degree
than it did for downsampling, but the LSD actually indicates
a massive improvement. This supports the impression that
WaveMedic managed to reproduce the approximate intensity in
the high-band, if not the structure. In comparison, the low-pass
degraded audio is almost completely silent at high frequencies,
incurring a huge LSD penalty. On the whole, our findings
are that WaveMedic again struggles to estimate the spectral
structure; the high frequency spectrum varied over time but
was uniform in the frequency domain, i.e., white noise. This
is an unexpected result, since the hallmark of DeepMind’s re-
search with WaveNets is the production of extremely realistic-
sounding speech with high quality spectral properties entirely
from trained WaveNets. [1] Our first inclination is to attribute
this outcome to insufficient training. However, we also argue
that the inclusion of preprocessed spectral information with
the degraded waveforms (in the spirit of [4]) may improve
the accuracy of the enhancements – we leave this as future
work.
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D. Recovering from Heavy MP3 Compression

Using WaveMedic to recover audio degraded by heavy
MP3 compression yields more interesting results, especially
in the frequency domain (see Figure 6). When clean audio
is compressed into the 8-bit LAME MP3 encoding, we see
that the spectral information is greatly simplified, giving
rectangular blocks separated by even time steps. However,
when we feed this degraded audio into WaveMedic, we see
that it regains a more amorphous shape which more closely
resembles that of natural speech. Again, we find that there
is some white noise superimposed onto the signal, which we
attribute to insufficient training. However, with close listening
we find that the characteristic ”warbling” artifacts in the
MP3-encoded audio are removed, a noteworthy result for
WaveMedic.

The value of r2 again remains steady from degraded to
enhanced while LSD drops significantly. This is a smaller
quantitative improvement compared to that of the low-pass
filter experiment, but is more encouraging because the MP3
algorithm is designed to preserve spectral information, rather
than discarding it.

E. Summary of Quantitative Results

In the tables below, we summarize the performance of
WaveMedic in all of the experiments we performed.

In order to compare WaveMedic’s output to the original
and degraded 48kHz files, we found we needed to convert
the latter to 16kHz. We use two Python libraries for this,
librosa and scipy. For the downsampling test we use 48kHz
output and skip this step. We adjust waveforms to eliminate
any relative phase shift before computing r2.

The r2 and LSD values differ minutely between libraries
(scipy is shown), but PESQ gives significantly different results
(even on files that sounded identical through headphones).
PESQ also fails to run successfully on many of our files. We
have reported the PESQ values we are able to obtain below;
where two numbers are present, the first is for librosa and the
second is for scipy. Where one is present, it is for librosa.

The best value for each metric is bolded.

Light Clipping Degraded WaveMedic Audacity
Pearson r2 0.521 0.881 0.572
LSD 18.9 dB 15.8 dB 11.3 dB
PESQ 1.22-1.72 1.98 1.33-2.18

Heavy Clipping Degraded WaveMedic Audacity
Pearson r2 0.391 0.769 0.210
LSD 21.6 dB 16.5 dB 11.3 dB
PESQ 1.31-2.20 1.19 2.13-2.15

Fig. 6. Recovering from heavy MP3 compression. Top: original, middle:
degraded, bottom: enhanced. The lower of each spectrogram corresponds to
the low-frequency bands.

Downsampling Degraded WaveMedic
Pearson r2 0.980 0.975
LSD 13.5 dB 11.9 dB

Low-Pass Filter Degraded WaveMedic
Pearson r2 0.962 0.942
LSD 37.3 dB 14.5 dB

MP3 Encoding Degraded WaveMedic
Pearson r2 0.941 0.938
LSD 25.4 dB 12.6 dB

V. CONCLUSION

In this project, we present our prototype, WaveMedic, a
WaveNets-based speech audio enhancement tool for recovering
from audio degradations. We find that WaveMedic is capa-
ble of correcting low-frequency waveform characteristics and
removing some warbling artifacts in degraded audio, but it
introduces a significant amount of noise which we attribute to
limited training and model sizes. It can reconstruct the intensity
of the highband spectrum, but not its shape. Our prototype
performs better than an existing audio declipping tool by our
subjective assessment; quantitative metrics were more mixed.
It is noteworthy that WaveMedic is a more versatile tool than
traditional purpose-built enhancers, since is capable of learning
to recover arbitrary degradations. In future experiments, we
hope to see improved performance of WaveMedic when we
add contextual data (such as spectral information) and increase
the computing resources available during training time.
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