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Abstract 

 Event detection and temporal 
classification has long been a 
fundamental goal in NLP. Recent studies 
have highlighted the challenges that 
modern approaches to this task face, 
particularly when addressing both 
detection and classification together. 
Here, we use a new annotated corpus, 
StoryCloze, to train classifiers capable of 
classifying relationships spanning the 
length of a short narrative. Our final 
classifier achieves 62% test accuracy 
with a selection of hand-built features 
designed to capture lexical and syntactic 
features, despite sparsity in the dataset.  

Introduction 

The translation of ideas expressed in 
natural language to a computationally usable 
form remains a fundamental goal NLP. Story 
understanding is a specific instance of such 
a translation, but has seen several 
challenges in the past due to a heavy 
emphasis on events and their relationships 
and the varying span of textual relationships. 
However, advances in semantic NLP 
techniques have made possible new 
approaches, regenerating interest in the 
task. 

Temporal relation ordering is 
motivated by various real world applications, 
such as medical diagnosis and information 
pooling from news articles [1], [2]. As most of 
the data is unlabeled, there is a large interest 
in automated labelling of events and 
relationships in raw text data. We are 
therefore interested in using supervised 
methods to learn events and relationships for 
use in unsupervised annotations.  

In this study, we aim to use a new 
corpus designed for story understanding and 
narrative structure learning to capture and 
learn temporal relations between common 
daily events. The input to our algorithm is a 
simple 5-sentence narrative (Fig. 1). We use 
multi-class logistic regression to learn 
common events and their relationships to 
output a predicted temporal relationship, 
{“BEFORE”, “DURING”, “AFTER”} between 
each pair of events.  
 
Related work 

 Previous studies have attempted to 
classify temporal relations with hand built 
semantic and syntactic features and 
standard machine learning classifiers and 
approaches, using annotated datasets [1]–
[3]. These studies have reported moderate 
successes with simple classifiers, have 
suggested that increasingly sophisticated 
methods have failed to perform better on this 
classification task. The possibility that 
simpler methods may be more effective at 
classifying temporal relations serves as a 
clear indicator for a first-attempt classifier for 
this task, but also suggests that there may be 
underlying relationships that have yet to be 
captured.  
 Contrastingly, recent studies have 
focused on the extraction and classification 
of temporal relationships from raw datasets 
[4], [5]. These studies have focused on the 
use of split classifiers, in which specialized 
classifiers are used for each task (event and 
relation extraction) separately, to achieve 
higher performance. The use of split 
classifiers to both identify events and classify 
their relations presents 



a dilemma – any errors in event extraction 
will impact the performance of the 
subsequent event labelling. Indeed, these 
studies have had difficulty achieving high 
accuracy on relation labeling (> 50%).  
 The features used in the specialized 
classifiers are analogous to those found in 
studies with annotated datasets. It is 
noteworthy that both studies train each 
classifier on separate datasets, which allow 
them to leverage information across different 
corpora during the temporal relation 
classification task. As temporal relations are 
highly dependent on event context and 
writing style, the use of multiple datasets may 
be crucial to a robust classifier.  

  
Dataset and Features 

Dataset  
Mostafazadeh et al. recently 

generated a new corpus, StoryCloze, 
designed for use with story understanding 
work [6]. The corpus is a collection of isolated 
5 sentence stories, in which events in later 
sentences have some dependency 
(temporal, causative, etc.)  on previously 
mentioned events. The corpus is released 
with separate annotations indicating the true 
set of events and relationships, allowing the 
use of raw sentences and annotations as 
algorithmic input. It is noteworthy that the 

corpus is limited at a total of 2,412 event 
relationships, spread over ~300 stories. 
 While the StoryCloze corpus 
annotations use causal temporal 
relationships, we focus the classification 
problem here by considering only temporal 
relationships between events. We are 
interested in classifying each pair of events 
(e1, e2) in each story as one of {“BEFORE”, 
“DURING”, “OVERLAPS”}, indicating the 
temporal placement of event e1 with respect 
to event e2.  

Notice that most events have a 
before-and-after relationship, where the 
second event in a consecutive pair occurs 
after the first event (Fig. 1). In the provided 
example, the two exceptions we see are the 
first and last consecutive event pairs. In the 
first pair, “named” and “was” refer to Bill’s 
state and existence, and can be said to occur 
simultaneously, while in the last pair, 
“passed away” occurs after “resuscitation.” 
On a broader scale, this example illustrates 
the difficulty involved in story understanding 
scope. In contrast with other well-defined 
NLP tasks, such as sentiment classification, 
temporal relations are often influenced by 
general syntactic structure, necessitating 
features capturing structure in addition to 
token presence 
 
Feature Selection 
 As our study focuses on the 
relationships between events, we first turned 
our attention to the labelled events in each 
story. For each labelled event, we consider 
both the word used and the word lemma. We 
also draw upon synsets (synonyms) derived 
from the WordNet corpus to consider the 
relationships associated with related words.  
 To capture the pair-wise event 
relationships, we used three features specific 
to event pairs. First, we use tense 
comparisons between two events e1 and e2. 
Intuitively, this is designed to address cases 
when the tenses of the two events do not 
match, such as when one event is referred to 
in the past tense and the other in the present 
tense. We also consider event ordering 
within the document. While some events 
may be biased towards certain orderings, 

Figure 1. Sample annotated short narrative from 

StoryCloze corpus. Events are labelled in green, 

relationships shown with connecting arrows.  



alternative sentence structures resulting in 
swapped orderings may indicate different 
temporal progressions.  
 We noticed that syntactic structure 
often influences the temporal relationships 
between events in narratives. We therefore 
added two features aimed at capturing 
general sentence structure. Taking a cue 
from Chambers’ previous study, we used 
uni-, bi-, and trigram part of speech tags to 
capture any syntactic similarity that occurs 
[5]. Constrained by limited corpus size, we 
also used token distance between events as 
a simple structure metric.  
 
Methods 

 We first implemented a baseline 
algorithm using standard multi-class Naive 
Bayes with our selected features. We used 
the likelihood function 

 

ℒ(𝜙𝑦,  𝜙𝑗|𝑦=0,  𝜙𝑗|𝑦=1,  𝜙𝑗|𝑦=2)

= ∏ 𝑚𝑎𝑥
𝑦

𝑝 (𝜙(𝑗|𝑦)(𝑥(𝑖))) 𝑝(𝑦)

𝑚

𝑗=1

 

 
to assign the maximize likelihood class to 
each example. More specifically, for each 
event pair, we compute the conditional 
probability of the features of the event pair, 
given each class label. We then assign the 
highest probability class label to the event 
pair, and evaluate precision (p), recall (r), 
and F1 metrics with  

𝑝𝑐𝑙𝑎𝑠𝑠 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠

# 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠
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To better understand any class specific 
failings, we compute accuracy and recall for 
each class respectively, and average them  
for computation of the F1 metric across the 
entire dataset. 
 While Naïve Bayes is often used for 
sentiment classification and other well-
defined NLP tasks, we found it to be a poor 
model choice for temporal relation 
classification. The Naïve Bayes model 
assumes feature independence, and is 
highly influenced by dataset bias towards 
any one class. Temporal ordering is often 
influenced by sentence structure as opposed 
to token presence and counts, which may 
break the assumed feature independence. 
Furthermore, the tendency for temporal 
linearity in story telling makes gives a strong 
bias towards the “BEFORE” class, making 
Naive Bayes a poor fit for the features and 
dataset selected. 
 We decided to experiment with a 
multi-class logistic regression, where the 
model does not assume feature 
independence. To reduce the impact of 
dataset bias towards the “BEFORE” class, 
we use a multinomial generalized linear 
model (GLM) to predict class probability 
given observed examples and derived 
features. We use the generalized 
multinomial regression modelled by Softmax 
Regression, maximizing the probability 
function  

𝑝(𝑦 = 𝑗|𝑥; 𝜃) =
𝑒𝜃𝑗

𝑇𝑥

𝛴𝑗=1
𝑘 𝑒𝜃𝑗

𝑇𝑥
, 

where 𝑗 = {1, 2, 3} corresponding to the three 

classes relationship classifications 

{“BEFORE”, “DURING”, “OVERLAPS”}.  

Given the conditional probability 

formula for each class given an example x, 

we classify each example with the highest 

probability class after learning the maximum 

likelihood estimate parameters 𝜃. Using the 

Softmax probability function, we compute the 

maximum likelihood estimate of the 

parameters via the likelihood function 
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where k = 3, corresponding to the number of 

classes. We then evaluate training and 

testing performance of the multiclass logistic 

regression model similarly through precision, 

recall, and F1 metric as stated above.  

Experiments and Results 

 All models were trained via 10-fold 

cross validation on the annotated Story-

Cloze corpus, and the best model was then 

trained on the entire training set. Reported 

results are derived from a held-out test set, 

also taken from the StoryCloze corpus. 

 Our first experiment focused on the 

vanilla multiclass Naïve Bayes Classifier with 

event specific features and part of speech n-

grams. The classifier achieved an overall F1 

score of 50% on the test set (detailed results 

in Table 1).  

 Our subsequent experiments used 

the multiclass logistic regression model 

modelled by Softmax Regression. The 

baseline logistic regression model achieved 

an averaged F1 score of 48%, and inclusion 

of the features increased the averaged F1 

metric to 62%.  

Discussion 

 While our initial results with logistic 

regression suggest that Naïve Bayes is a 

stronger fit for the task, we rationalize that 

the performance loss is due to inherent bias 

in the dataset. The probabilities in the Naïve 

Bayes model are contingent on class 

probabilities determined by the dataset. As 

the majority of labelled event relations in the 

corpus have the “BEFORE” relation, Naïve 

Bayes is able to achieve marginally higher 

accuracy by simply predicting “BEFORE” 

more often. 

 Our initial experiments with features 

specific to events and pairs of events  

 

produced only minimal gains in performance 

(results not shown), leading us to pursue 

syntactic features. Despite their success in 

previous studies, part of speech n-grams 

provided only minimal gains (~1%) in our 

experiments. Examination of feature weights 

and counts after training revealed highly 

sparse features, which prompted us to use 

the simpler token distance metric to capture 

general structure (Fig. 2).  

 Realizing this, we ran experiments 

using only the top 100 and 200 most 

influential features (not shown). While these 

classifiers used only features with the largest 

weights, they were unable to achieve the 

same level of performance as the classifier 

with the full set of features (F1avg = 0.57, 

0.60, respectively). These accuracies 

suggest that most the classifier’s 

performance stems from the top 200 

features, where the vast majority of our 

features contribute to ~2% of total 

performance (Fig. 2).  

 Surprisingly, token distance between 

event pairs alone increased averaged F1 

performance by ~8%, making it the most 

influential feature in our classifier. As token 

distance broadly captures narrative structure 

across all five sentences, there may be an 

underlying relationship between event 

separation and temporal ordering. While this 

result appears to highlight the importance of 

syntactic features to the success of this 

classification task, these gains seem 

intuitively disproportionate to the simplicity of 

token distance. We posit that the value of 

token distance feature may be potentially 

overestimated in this study because of the 

 CLASS P R F1 

 Before 0.64 0.66 0.65 
During 0.62 0.58 0.60 
Overlap 0.48 0.55 0.55 

AVG -- 0.62 0.62 0.62 

Table 1. Logistic Regression Classifier performance 

with specified features and L1 regularization over 

354 test relations  



limited size of the annotated StoryCloze 

corpus. 

 We found that the primary challenges 

we faced in these experiments were feature 

sparsity resulting from limited data and 

feature engineering for sentence structure 

(Fig. 2). With only 300 stories and 2,412 

labelled relationships in the corpus, there 

was not enough information for simple 

classifiers to perform exceptionally well 

(machine learning typically shines with > 

10,000 examples). The variety and 

complexity in the English language makes it 

difficult to succeed in a machine learning task 

with such a small data set.  

 A possible approach to address the 

lack of information available in StoryCloze is 

to combine information from multiple 

corpora. This approach was used previously 

in the state of the art narrative closure 

algorithm, to learn lexical information on 

events [5]. For this task, the VerbNet corpus 

will provide additional event specific 

information, which can help to reduce the 

sparsity within StoryCloze (Fig. 2) [7].  

 Overfitting was a recurring issue 

throughout our experiments, particularly in 

simpler models with fewer features (Table 1). 

We used L1 regularization to address 

overfitting of the training examples. We also 

experimented with L2 regularization, but 

found that error was higher with L2, possibly 

due to sparsity of the data.   

Future Directions 

 The limited size of the StoryCloze 

corpus provides minimal lexical information 

about the labelled events. As this information 

could potentially indicate event ordering 

relative to the narrative time frame, we seek 

to additionally train on the VerbNet corpus to 

integrate lexical information specific to verbs 

into the feature set.  

 Perhaps one of the most direct fixes 

to the StoryCloze corpus would be to add 

additional annotations. While the existing 

annotations in the corpus were added 

manually, our study reinforces the need for 

automatic event extraction and labeling to 

increase data set size, which would help to 

increase feature density and possibly 

balance classes as well.  

 Finally, our study highlights the 

difficulty associated with engineering 

feasible features to capture syntactic 

structure. With additional features (from 

VerbNet) and a substantial increase in the 

size of the annotated StoryCloze corpus, we 

posit that a deep-learning approach may be 

able to extract and select general features for 

sentence structure.  

 

Conclusion 

 Using a multiclass logistic regression 

classifier with hand-built features, we 

achieved 62% test accuracy on annotated 5-

sentence short narratives, in which we found 

that features capturing broader sentence 

structure are more likely to be effective in 

predicting temporal relations across distinct 

sentences. We will extend our study to 

include event-specific information available 

in the VerbNet corpus, but posit that a deep-

learning approach may be more successful 

in the identification of features for sentence 

structure.  
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