(CS229 Final Project
Human Activity Recognition using Smartphone Sensor Data

Nicholas Canova, Fjoralba Shemaj

December 2016

Abstract

This paper focuses on building classifiers that accurately identify the activities being performed by individuals using their
smartphone sensor data. We review the performance of the models, and make suggestions that could improve future accuracy.
Ezxploratory data analysis and visualization techniques are used to gain a better understanding of the way users behave and

how activities differ from one another.

1 Introduction

As more sensors are being built into mobile phones
to measure our movements, positioning and orien-
tation, the opportunity to understand this data and
make improvements in our daily lives increases. The
scope of our project consists of analyzing mobile
phone sensor data in the context of activity recog-
nition. More specifically, our objective is to build
a model that accurately classifies whether an indi-
vidual is walking, walking upstairs, walking down-
stairs, sitting, standing or laying using sensor data.

Studying activity recognition offers several benefits
and enables many new applications. Mobile health
applications that track a user’s activities over time
can be beneficial for elderly assistance or personal
health monitoring. In addition to providing per-
sonal support, this research also has connections to
various fields of study including medicine, human-
computer interaction, and sociology.

2 Dataset and Prior Research

2.1 Description of the dataset

We obtained our dataset from the UC Irvine Ma-
chine Learning Repository [1]. For the original con-
struction of the dataset, an experiment was carried
out with 30 participants, having each person wear a
Samsung Galaxy S2 smartphone containing an ac-
celerometer and a gyroscope, while performing the
six activities mentioned above. The smartphone
collected 3-axial linear acceleration and angular ve-
locity measurements, each at a constant rate of 50

hertz, and the experiment was recorded for manual
labeling of the response variables. Each individual
observation in our dataset is a construction of sen-
sor signals received over a 2.56 second interval win-
dow, or 128 readings per window, with consecutive
observations overlapping by 50% in time. Feature
variables for the dataset were then constructed by
calculating metrics from the accelerometer signals
in the time and frequency domain, including the
mean, standard deviation, signal magnitude area,
entropy, signal frequency, etc. In total, each obser-
vation corresponds to 561 constructed features from
the data collected.

The dataset has been split into 70% training and
30% test data, with 21 of 30 participants in the train
data and the remaining 9 participants in the test
data. The disjoint nature of the training and test
split is important to consider; an effective model at
recognizing activities should be able to predict the
activities of new individuals. Since each study par-
ticipant walks, stands and generally performs activi-
ties with differences in his or her movements, testing
the performance of the model on individuals not in
the training data is critical. While a model trained
and tested on the same set of individuals could per-
form better, this would not meet the objective of
our project.

2.2 Related research

Anguita et al. [2], the team that performed the
original experiment, focused on applying a sup-
port vector machine adapted for multiclass classi-
fication, using computational efficiencies that ex-
ploit fixed-point arithmetic. This computational



efficiency would allow applications build using this
model to perform better on smartphones, since the
approach requires less memory, processor time and
power consumption.

Bao et al. [3] developed algorithms to detect phys-
ical activities from everyday tasks, and observed
that while some activities are classified more accu-
rately with subject-independent training data, oth-
ers require subject-specific training data. This sug-
gests that multiple sensors aid in recognition be-
cause conjunctions in acceleration feature values
can help to identify many activities.

Mannini et al. [4] analyzed activity recognition
for ambulatory monitoring and pervasive comput-
ing systems, where classification of human motion
is analyzed, with a focus on the computational cost
employed for this purpose. The group employed
naive bayes, hidden markov models and support
vector machines, amongst other algorithms.

3 Data Visualization

To capture the structure of our data, and better
understand the distinctions between the categories
of our dataset, we implemented two well-known al-
gorithms: principal component analysis (PCA) and
t-distributed stochastic neighbor embedding analy-
sis (t-SNE). Figure 1 displays the projection of our
dataset onto a two dimensional plane using the first
two principal components obtained by PCA.
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Figure 1: 2D projection of the data with PCA

Even though these two components explain a large
portion of the overall variance in the data, approxi-
mately 93%, PCA can only represent the structure

of the data through linear subspaces. Alternatively,
the t-SNE algorithm (see Figure 2 below) can cap-
ture interesting non-linear paths and hence, looking
at both types of visualization can provide useful in-
sights from the data.
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Figure 2: 2D projection of the data with t-SNE

Both algorithms effectively distinguish between ac-
tivities of motion (walking, walking upstairs, walk-
ing downstairs) and static activities (sitting, laying,
standing), and each of the activities are well repre-
sented by a cluster. Within all activities, sitting
and standing overlap most; this is reflected in the
normal ellipses overlayed for each class on the PCA
plot, which display a 95% confidence region. This
suggests that distinguishing these activities from
one-another may pose a problem for our models.

4 Models

As mentioned above, our main objective is to con-
struct a highly accurate classifier that generalizes
well on data from new individuals. For this pur-
pose, we have tested the performance of different
classifiers, and assessed why some models performed
well while others performed poorly. Algorithms im-
plemented, as well as our motivation for each algo-
rithm, include:

e Multinomial model [5] - One of the less com-
plex models implemented. Given the size and
high dimensionality of our data, we decided to
start with a model less prone to overfitting that
would serve as a baseline for the performance of
more complex models.



e Support vector machines [6] - As indicated by
the PCA figure, some clusters fully overlap
while other clusters only partially overlap, de-
pendent on how the corresponding activities
were performed. Therefore, we would expect
maximizing margins when separating these ac-
tivities to result in good performance. We
chose to implement SVMs using a one-vs-one
approach that trains a separate classifier for
each different pair of labels, as this generally
outperforms a one-vs-all approach, particularly
in the case of similar classes. We experimented
with linear, radial-basis and polynomial kernels,
tuning each model and evaluating their perfor-
mance.

e Gradient boosted trees [7] - Our data is high-
dimensional and there is a high level of interac-
tion among the features, both of which boosted
trees tend to handle well. We were particularly
interested to see how this model would perform
compared to SVMs.

e Linear discriminant analysis [8] - The potential
of the model for high accuracy was inferred from
the projected data using PCA, which indicated
visible clusters for each activity.

The parameters of each model require a certain
amount of tuning and experimentation to optimize
performance. Tuning for each of the models has
been performed exclusively on the training data via
7-fold cross-validation, splitting the training data
into disjoint training and validation sets, while the
test data is held out solely for a final performance
analysis.

5 Results

5.1 General results

Our dataset contains roughly an equal number of
observations for each of the six activities. Addition-
ally, while specific applications of activity recogni-
tion may require that one or more activities be more
accurately classified than others, given our general
analysis we chose to weight each activity equally.
As a result, we use the overall misclassification rate
on the test data as our primary performance metric.
The train and test errors for each of our analyses are
displayed below:

Machine Learning Algorithm Train Error ‘Test Error
SVM with Linear Kernel 0.60% 3.66%
SVM with Radial Basis Kernel 0.33% 3.70%
SVM with Polynomial Kernel 0.64% 3.97%
Gradient Boosted Ttees 0.00% 5.29%
Linear Discriminant Analysis 1.43% 3.77%
Multinomial Model 0.42% 3.33%

Figure 3: Misclassification rates by model

Each model displays similar performance, other
than gradient boosted trees which had a higher mis-
classification rate. The similarity of the test er-
rors suggests that increasing the complexity of the
model does not necessarily improve its performance.
In general, models with linear decision boundaries
(LDA, multinomial, and linear kernel SVM) did
perform slightly better than gradient boosted trees
and SVMs with radial-basis kernel and polynomial
kernel of degree two.

From visualizations of the projected data, we can
expect fitting models with linear boundaries to per-
form well in separating the clusters, even though
the data is not entirely separable. Projecting the
data onto a higher dimensional subspace to bet-
ter separate the classes has clearly failed to deliver
better results. One reason could be that the data
cannot be perfectly separated, even when projected
in higher dimensions. Secondly, models that im-
plement linear boundaries are less prone to overfit-
ting than models such as radial kernel or polynomial
kernel SVMs and gradient boosted trees, and hence
are able to generalize better. In particular, gradient
boosted trees had a training error of 0%, which sug-
gests that the model had overfit the training data,
despite efforts to regularize the model by tuning the
learning rate, number of iterations and tree size.

5.2 Performance of linear kernel SVM

Since the linear kernel SVM has a low misclassifica-
tion rate and is computationally efficient to train,
we decided to further diagnose its performance. For
the purpose of feature selection, we applied PCA
and experimented with training the model on a dif-
ferent number of principal components. The best
result was obtained using the first 300 principal
components, however this resulted in the same per-
formance as simply applying linear kernel SVM to
the original data. Since reducing the number of fea-



tures did not improve the performance of the model,
we chose to retain all 561 features. We then ob-
served its training and test error, while varying the
number of examples in the training data. The re-
sults are displayed in Figure 4 below:
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Figure 4: Test vs. Train Errors

It is clear that the two lines are converging neither
too close nor too far apart from each other as the
number of training examples increases. This indi-
cates that that there is no bias or variance issue
with the model. Next, to examine its accuracy in
classifying each activity, we computed the confusion
matrix when trained and tested on the full train and
test data:
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Laying 537 0 0 0 0 0
Sitting 0 434 17 0 0 0
Standing 0 55 515 0 0 0
Walking 0 0 0 492 4 18
Downstairs 0 0 0 3 410 2
Upstairs 0 2 0 1 6 451
Accuracy % 100 88.4 96.8 99.2 97.6 95.8

Figure 5: Confusion matrix for SVM with linear kernel

The activity misclassified most often is sitting,
which has a misclassification rate of 11.6%, with al-
most all errors being incorrectly identified as stand-
ing. As expected, activities of motion are more
likely to be mistaken with other activities of mo-
tion, and vice versa for static activities. In addition,
after examining the specific observations for which
sitting was misclassified, we observed that the errors
mainly occurred during the transition from stand-
ing to sitting.

5.3 Performance of specific individuals

Motivated by the idea that the model may per-
form differently when tested on separate individu-
als, we then performed a leave-one-out cross valida-
tion where we train the model on 29 users and test
on the observations of the 30" user. The results are
displayed below:

Hold-One-Out Misclassification Rates

=
o

Misclassification Rate
o
=

=
o
&

0.00

1416 6 510 9 20 7 25 B8 1928 4 2112201827261723 2 3 1113243022 1 15
Experiment Participant

Figure 6: Misclassification rates by user

As anticipated, the misclassification rate by user
ranged significantly, from 0.0% to 19.5%. Examin-
ing the individual confusion matrices, we observed
for the users with the highest error rates, that one
inaccurate activity generally accounted for all er-
rors for that user. This motivates us to inspect the
variability between users within each activity.

To examine whether there is a large variance be-
tween individuals, we have reduced the earlier t-
SNE figure to specific activities, distinguishing by
color each of the different individuals performing
the activity. The two plots below correspond to
the t-SNE output for standing and walking, respec-
tively.

' ' ]
-50 0 50 100

Figure 7: t-SNE plot for standing, all users
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Figure 8: t-SNE plot for walking, all users

The t-SNE plot for walking shows clear variability
between individuals, with each individual belong-
ing to a noticeable cluster. On the other hand,
all individuals are grouped together with respect
to standing, indicative that individuals generally
stand in the same manner as one-another, but have
differences in the way they walk. This behav-
ior generalizes to other activities of motion and
static activities as well. This supports the research
by Bao et al. that some activities are classified
more accurately with subject-independent training
data, while others require subject-specific train-
ing data; static activities are likely to be classi-
fied equally well using either subject-dependent or
subject-independent data, while activities of motion
may require subject-specific data to achieve higher
accuracy.

6 Conclusion

Overall, our list of classifiers achieved relatively high
performance. While the various models displayed
similar test errors, the accuracy for individual users
and specific activities did vary significantly. Sitting
was the most difficult activity to classify, often being
misclassified as standing, and perhaps having addi-
tional features to distinguish sitting from standing
could help in this aspect.

Since the linear kernel SVM had a higher misclas-
sification rate when an individual was transition-
ing from standing to sitting, a model that captures
the time dependency in the data, such as a hidden
markov model, could be useful in this case. How-
ever, since the activities in the experiment occurred
in a predefined order, a new dataset where the order

of activities performed varied between users, and
were consistent with how users generally transition
between these activities, would be necessary when
implementing a hidden markov model.
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