
Language Models for US Presidential Candidates
CS 229 Final Project Report, Autumn 2016; Category: Natural Language

FNU Budianto
budi71@stanford.edu

Jeff Nainaparampil
jeffnain@stanford.edu

Shruti Murali
shru@stanford.edu

Abstract—We train three types of language models (LSTM,
GRU, and HMM) on datasets of sentences spoken by 2016
presidential candidates, Hillary Clinton and Donald Trump
during presidential and primary debates as well as their twitter
posts. We use the language models to perform sentence generation
and author classification. Results indicate that the LSTM RNN
performs the best in terms of perplexity (37.476) and author
classification error (10.39%) of our test set, although GRU comes
in a close second. Models trained using debates and tweets result
in lower classification error but higher perplexity compared
to models trained using only debates data. Further work of
fine-tuning hyperparameters and augmenting our dataset might
improve the performance of our models.

I. INTRODUCTION

The 2016 Presidential Election proved to be a very con-
tentious landscape, with heated language and attacks from both
major parties. A national newspaper notes that Donald Trump
has a very distinctive, unfiltered language, different from most
other politicians [1]. Computational analyses have also been
performed on words and sentiment the candidates have used
throughout the campaign trail [2] [3]. However, language
models might give us a closer look at the vocabulary and
sentence structure used by each of the major candidates, even
being able to provide a summarized view of their opinions on
certain topics.

Specifically, the input to our language model is the sequence
of words of the 2016 primary and presidential debates for
both Hillary Clinton and Donald Trump, as well as their
Twitter posts. For each word, the language model predicts the
next word that comes after it by outputting the probability
distribution of the next word. We employ three different types
of language models, two recurrent neural networks (RNN) and
one hidden Markov model (HMM) on this dataset. The two
different types of recurrent neural network we utilize are the
Gated Recurrent Unit (GRU) networks and the Long Short-
Term Memory (LSTM) networks. For each type of language
model, we generate two language models, one model trained
from the sentences of Hillary Clinton and the other trained by
the sentences of Donald Trump.

We use these language models for two different tasks. First,
we perform sentence generation of the two candidates using
multinomial sampling from the probability outputs of our
models. By introducing starting words to the model, our mod-
els are able to predict how candidates finish their sentences,
which might give insights on a candidate’s viewpoints and
their general sentence structure. Second, we perform author
classification, where we calculate and compare the likelihood

of a sequence of words belonging to each candidate using
their respective language models and attribute the words to
the candidate with the higher likelihood. For this task, we
compare the performance of our language models with the
classification performance of two classical machine learning
models: Naive Bayes with the Multinomial Event Model and
Support Vector Machines with the Gaussian Kernel.

II. RELATED WORK

Several different papers have looked into using language
models for a variety of purposes on different corpora. More
current papers tend to focus on RNNs, particularly the LSTM
and GRU models that we use for this project. For example, one
such paper looks at training LSTMs on two large corpora, one
in French and one in English (Treebank-3 dataset) [4]. They
utilize a similar network topology as ours, with an embedding
(which they call a projection layer) that maps to a layer of
LSTMs, which is finally mapped to the original word. Their
test perplexities vary from 110 to 140.

The LSTM configuration for our project is based on a
paper that implemented LSTM with dropout [5]. The overall
configuration of our project emulates the hyperparameters laid
out in the paper with some key differences that we outline in
the “Language Models” section. In particular, we utilize their
“Medium Configuration”, which has LSTM units of size 650
and a decaying learning rate, starting at 1 and decaying by 1.2
every epoch after the sixth. Including dropout prevents larger
networks from overfitting to smaller training sets. The paper
reports a test perplexity of 78.4 for their best LSTM language
model for the Penn Tree Bank [PTB] dataset.

More recently, more work has been done on fitting LSTMs
on very large datasets (on the order of one billions words).
One such paper, with two layers of LSTMs and 8200 hidden
units for each LSTM, produced dramatically good results, with
the state-of-the-art test perplexity of 30.2 [6]. The authors
comment that larger datasets allowed them to use different
configurations for their networks than what would work for a
smaller dataset, such as PTB. Their configuration might not
be applicable for our small dataset of the transcripts of Trump
and Clinton. Thus, we use different configurations to find the
best result.

For the authorship attribution and document classification
task in general, a variety of different methods have been uti-
lized. One paper on the topic compares five different machine
learning approaches on the common benchmark of identifying
the authors of the Federalist Papers [7]. The authors find

1

that, of the methods they compare, classical machine learning
algorithms work really well, with regularized discriminant
analysis performing the best. Another paper discusses the
features and methods available in a document to identify
authors [8]. For our paper, we utilize lexical features of word
tokens and a probabilistic method, but future improvements
to our classification algorithm might add more features and
methods to our classifiers.

Although there have been some recent work on linguistic
analysis of the political process [9] [10], a literature search
on building language models for Hillary Clinton and Donald
Trump show no results. To the best of our knowledge, we
are the first to build and utilize language models for the two
presidential candidates.

III. DATASET AND FEATURES

Our project uses two distinct dataset versions: the v1 dataset
are the transcripts from the primary and presidential debates
from Clinton and Trump and the v2 dataset is created by
adding twitter posts from the two candidates to the v1 dataset.
Both debates and tweets data are taken from http://kaggle.com.
Tables I, II, and III give an summary of the number of
sentences and words in each dataset. Lastly, a supplementary
Penn Tree Bank corpus of words (http://www.fit.vutbr.cz/
∼imikolov/rnnlm/simple-examples.tgz) is used to generate a
pretrained embedding.

The transcript data first is broken down by sentences. Each
sentence is then converted to lowercase and tokenized into a
sequence of words using the NLTK toolkit (http://www.nltk.
org) [11]. For the Twitter data, we first remove the emoticons,
replace all URLs with a URL-token, and tokenize to sentences
and a sequence of words using NLTK’s TweetTokenizer. For
both the transcripts and Twitter data, an EOS-token is added
to the end of each sentence. For both the v1 and v2 datasets,
we also create a copy with all punctuations removed to see
how the models perform with and without punctuation.

The sentences for each candidate are shuffled and split into
80% for the training set, 5% for validation, and 15% for the
test set. In training, we use both Clinton and Trump training
data to get the list of words so that both models uses the same
vocabulary list. We use a fixed vocabulary size (5500 for v1
and 9000 for v2) and the least frequent words are replaced
with unknown-token.

For the RNN and HMM language models, the sequence
of words is transformed to a vector of integers, where each
element represent the index of the word in the vocabulary
list. For Naive Bayes, we construct the word-frequency matrix,
where the ith row represents the ith sentence, the jth column
represent the jth word in the vocabulary list, and the (i, j)-
entry of the matrix represents the number of times word j
appears in sentence i. For SVM, we use the same matrix but
the (i, j)-entry is replaced with either a 0 or 1.

IV. LANGUAGE MODELS

We create a separate language model for each presidential
candidate. To do so, we apply two major types of models:

Number of Sentences v1 v2
Clinton 4110 10182
Trump 5330 12066
Total 9440 22248

Table I
NUMBER OF SENTENCES IN THE DATASET.

Number of Words with Punct. v1 v2
Clinton 86719 163633
Trump 77125 154714
Total 163844 318347

Table II
NUMBER OF WORDS IN THE DATASET.

Hidden Markov and Recurrent Neural Network, specifically
LSTM and GRU. A language model [12] is a learner that
outputs the probability of next word given the words prior,
i.e. it predicts:

P (wi|w1, w2, ..., wi−1)

To evaluate the two models, we utilize perplexity. Given a
known sequence of N words wi uttered by a candidate, where
P̂ is the conditional probability given by our language model,
perplexity [13] is defined as:

exp

(
− 1

N

N∑
i=1

log P̂ (wi|w1, w2, ..., wi−1)

)
Our RNN language model is depicted in Figure 1, where

the RNN cell could be an LSTM or GRU. Due to the small
size of our dataset, we use only one RNN layer. Each word
is first mapped via a word embedding to a vector of size 650.
For both the LSTM and GRU, we apply a dropout function
with a keep probability of 0.35, adding regularization to our
neural network model. Functionally, dropout either scales up
by 1/0.35 with probability 0.35 or sets to zero each element in
the embedding vector. This scaling ensures that the expected
value of the sum remains unchanged. The embedding vector
is fed into the RNN cell, which outputs a vector of the same
size. To convert the output of RNN back to its word id, we

v1 v2
Number of unique words with Punct. 5848 11555
Vocabulary size 5500 9000

Table III
NUMBER OF UNIQUE WORDS IN THE DATASET AND VOCABULARY SIZE

USED.

Figure 1. RNN Language Model.

2

http://kaggle.com
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
http://www.nltk.org
http://www.nltk.org

Figure 2. An unrolled LSTM RNN. Source: [15]

multiply the output with a weight matrix and add a bias vector
to transform it into a vector the same size as the vocabulary
list. We then apply a softmax function to make it a probability
distribution.

For the training of the RNN models, the hyperparameters
we find that lead to ideal validation perplexity were a learning
rate of 1.0 with a decay factor of 0.8, a max gradient norm of
5 (to prevent an exploding gradient), a mini batch size of 20.
The training occurs with stochastic gradient descent with log
perplexity as the loss function and back-propagation step-size
of 35. We then run the training for 18 epochs, where for each
epoch we pass through all training data.

A. Long Short Term Memory (LSTM)

Long Short Term Memory [14] cell consists of internal cell
state c(t)i , output h(t)i , and input x(t)i , all with the same size
(650 for our case). The cell state and output is governed by
the following gating functions:

I
(t)
i =WIi · [x(t), h(t−1)] + bIi

J
(t)
i =WJi · [x(t), h(t−1)] + bJi

F
(t)
i =WFi

· [x(t), h(t−1)] + bFi

O
(t)
i =WOi

· [x(t), h(t−1)] + bOi

I, F,O are input, forget, and output gates, respectively. J is
new cell state candidate. From these gating functions, the next
cell states and outputs are calculated via:

c
(t)
i = c

(t−1)
i σ(F

(t)
i) + σ(I

(t)
i) tanh(J

(t)
i)

h
(t)
i = tanh(c

(t)
i)σ(O

(t)
i)

A general diagram of an LSTM cell is given in figure 2.
We utilize an open-source TensorFlow [16] script to imple-

ment an LSTM language model, based on [5].

B. Gated Recurrent Unit (GRU)

GRU cells are governed by the following functions [17]:

z
(t)
j = σ

(
Wzj · [h(t−1), x(t)] + bzj

)
r
(t)
j = σ

(
Wrj · [h(t−1), x(t) + brj]

)
h̃
(t)
j = tanh(Wh̃j

· [r(t) · h(t−1), x(t)] + bh̃j
)

h
(t)
j = (1− z(t)j)h̃

(t)
j + z

(t)
j h

(t−1)
j

Figure 3. A GRU cell. Source: [15]

LSTM and GRU have a few differences. First, while LSTM
has three gates, GRU only has two gates: read (rj) and update
(zj). Next, the functions are similar except for the cell state
calculation where instead of independent forget and input
gates, GRU uses the same update gate to gate both the previous
state and the candidate next state. Lastly, the cell state and the
output are the same in GRU (hj). A general diagram of a GRU
cell is given in figure 3.

C. Hidden Markov Model (HMM)

A Hidden Markov Model (HMM) [18] is a modeling
technique where the system being modeled is assumed to be a
Markov process (the future state depends only on the present
state) with hidden states. We define the number of hidden
states using the part-of-speech (pos) tagger in NLTK toolkit.
The number of states can be seen at Table IV. HMM uses
three sets of parameters {transition distribution (A), emission
distribution (B), initial state distribution (p0)}, which are
initialized empirically:

p0(s) =

∑T
t=1 1{zt = s}

T

Aij =

∑T−1
t=1 1{zt = i ∧ zt+1 = j}∑T−1

t=1 1{zt = i}

Bjk =

∑T
t=1 1{zt = j ∧ xt = k}∑T

t=1 1{zt = j}

We combine all the sentences in the training set into one
long vector of word indices. Laplacian smoothing is applied
on the parameters, and we then use the hmmtrain Matlab
implementation of the Baum Welch algorithm to train the
model. Baum Welch (Forward-Backward) is an EM algorithm
where in the E-step, we first run the forward and backward
algorithms to compute αi and βi:

αj(t) =

|S|∑
i=1

αi(t− 1)AijBjxt

βj(t) =

|S|∑
i=1

βi(t+ 1)AjiBixt+1

and then set: γt(i, j) := αi(t)AijBjxt
βj(t+1). In the M-step,

we re-estimate the maximum likelihood parameters as:

3

Number of Hidden States v1 v2
With punct. 42 44
Without punct. 35 35

Table IV
NUMBER OF HIDDEN STATES IN THE HMM.

Aij :=

∑T
t=1 γt(i, j)∑|S|

j=1

∑T
t=1 γt(i, j)

Bjk :=

∑|S|
i=1

∑T
t=1 1{xt = vk}γt(i, j)∑|S|
j=1

∑T
t=1 γt(i, j)

where T is the length of the sequence and S is the hidden
states. Perplexity is calculated using the hmmdecode Matlab
implementation that computes the likelihood of a sequence
using the forward algorithm. We train the HMM models for
500 iterations.

V. LANGUAGE MODEL APPLICATIONS

A. Sentence Generation

Since the RNN language models give us the probability of
next word given previous words, we can generate sentences
by first feeding starting words (or an EOS-token if no starting
words are used) into our model, get the next word, feed the
new word back into the model, get another word, and so on
until we get EOS-token as the next word, which indicates a full
sentence. Instead of picking the word with highest probability
as the next word, we do multinomial sampling using the
softmax output as the probability distribution, making our
sentence generation non-deterministic.

For the HMM, we first run Viterbi algorithm (implemented
as hmmviterbi in Matlab) to get the most likely hidden state
given the starting words (or the EOS-token if no starting words
are used). After that, we follow the transition and emission
distribution to generate the sentence.

B. Author Classification

For this task, given a sentence s, we can predict the most
likely author a using Bayes’ Rule:

argmax
a

P (a|s) = argmax
a

P (s|a)P (a)

where P (s|a) =
∏N

i=1 Pa(wi|w1, w2, ..., wi−1), using the
chain rule of probability. P (a) is empirically calculated via:

P (a) =
#sentences in training set authored by a

#sentences in training set

In RNN language models, we calculate P (s|a) by multiplying
the probability of the target words taken from the softmax
output. In HMM, we calculate P (s|a) using the forward
algorithm, which gives us the probability of the sentence (the
observed sequence).

We also compare the classification performance of RNN and
HMM against the classical machine learning models: Naive

Bayes using multinomial event model and SVM with Gaussian
kernel:

K(x, z) = exp

(
− 1

2τ2
||x− z||22

)
The Naive Bayes and SVM are implemented similar to the
spam classification task in Problem Set #2, but instead of
classifying spam or non-spam, we classify Clinton or Trump.
Another distinction is that we do not remove the frequent
words.

VI. RESULTS AND DISCUSSION

We perform a parameter search in order to find the ideal
hyperparameters for our model. For more specifics of the pa-
rameters we used, please see the “Language Models” section.

The primary metric for our problem is perplexity, as defined
above. The comparison of training and test perplexity between
the three approaches for dataset v1 (debates only) can be
seen at Table V and VI. The comparison of training and
test perplexity between the three approaches for dataset v2
(debates + tweets) can be seen at Table VII and VIII. Finally,
the comparison of author classification test error can be seen
at Table IX, and the confusion matrix of LSTM and dataset
v2 with punctuation (which gives the lowest test error) can
be seen at Table X. The perplexities of the LSTM and GRU
with a pretrained embedding are not tabulated, but generally
performed around 26% worse in test perplexity than using a
trained embedding for the LSTM in the v1 dataset.

The results indicate that LSTM performs the best in terms of
perplexity and and classification error, and LSTM is slightly
better than GRU. Both RNN models outperform the HMM.
This might be due to RNN models making decisions based on
longer histories of words preceding the current word and that
the HMM assumption that the hidden states are the part-of-
speech tags of the words might be too strong of a bias. Naive
Bayes already performs very well in the classification task with
only 15.15% error, but the RNN models are able to achieve
an even lower error, around 10%. The SVM’s high error is
most likely because we do not remove the frequent words and
because we replace the word-frequency matrix to 0 and 1.
Using pre-trained embedding for the GRU and LSTM likely
does not give better results, probably because it is trained
using a different dataset (Penn Tree Bank corpus) and is not
improved during training.

Across all models, perplexity and classification error is
better on the dataset with punctuation than on the dataset
without punctuation, which indicates that punctuation plays
an important role in word sequence prediction. The RNN
language models are able to learn the sentence structure and
punctuation placement, which can be seen in the generated
sentences below. Perplexity is higher on models trained using
debates and tweets compared to models trained using only
debates data, but the classification error is lower. The higher
perplexity is probably due to structural and grammatical dif-
ferences between sentences in debates and twitter posts.

To get a qualitative analysis of the models, we perform
generation of three sentences using the v2 dataset with punctu-

4

Model Trump Clinton Trump Clinton
(w/o Punct) (w/o Punct)

LSTM 20.063 27.037 28.598 35.349
GRU 19.263 25.128 28.019 33.362
HMM 56.309 80.485 86.330 114.718

Table V
TRAIN PERPLEXITY OF DIFFERENT MODELS FOR DATASET V1.

Model Trump Clinton Trump Clinton
(w/o Punct) (w/o Punct)

LSTM 37.476 53.893 60.724 80.860
GRU 41.304 58.388 68.633 87.740
HMM 98.970 143.695 175.518 229.559

Table VI
TEST PERPLEXITY OF DIFFERENT MODELS FOR DATASET V1.

ation. Each sentence is generated with different starting words:
“we will”, “if i win”, and “i want”.

[LSTM] Clinton: “we will do it, together, so that has had
a lot of doing in our own country. if i win, in the situation
administration, the affordable care act, which is completely
part of the very best comment. i want to be a president who
thinks joe and security around the world.” Trump: “we will
make america great again! if i win, it ’s the best memorial
contributions. i want to run against the aliens in this country,
will bring back our jobs and make america great again!”

[GRU] Clinton: “we will continue to divert percent of
americans and how we ’re going to get help guns, you know,
look, but it ’s always important for people under islam. if i win
in the senate, i do n’t think it is created. i want to know more
about this than anybody else?” Trump: “we will be able to
bring jobs back to build up to meet the country in the middle
east. if i win it, and unlike the republican party, they ’re killing
us. i want to go to louisiana, ok, a lot of things because whether
it is right to march.”

[HMM] Clinton: “we will not do the terrorists by our
interests is the employees. if i win in ideas, that can n’t in
to push everything to be laying. i want to do those jobs, he is
taken on their women safe.” Trump: “we will watch out the
amazing figure, this picture off companies. if i win that there
wants praying soft. i want many big review!”

From the generated sentences, we can see that both RNN
models are able to generate sentences that for the most part

Model Trump Clinton Trump Clinton
(w/o Punct) (w/o Punct)

LSTM 29.235 30.923 40.788 41.257
GRU 28.370 30.142 40.115 39.962
HMM 93.243 104.816 136.888 151.323

Table VII
TRAIN PERPLEXITY OF DIFFERENT MODELS FOR DATASET V2.

Model Trump Clinton Trump Clinton
(w/o Punct) (w/o Punct)

LSTM 51.444 56.245 79.275 84.494
GRU 55.833 60.337 85.277 89.426
HMM 151.390 165.186 231.379 242.429

Table VIII
TEST PERPLEXITY OF DIFFERENT MODELS FOR DATASET V2.

Model With punctuation w/o punct.
v1 v2 v1 v2

LSTM 0.1253 0.1039 0.1279 0.1252
GRU 0.1325 0.1093 0.1403 0.1228
Naive Bayes 0.1436 0.1515 0.1495 0.1755
HMM 0.2898 0.1881 0.3153 0.1833
SVM 0.2931 0.3282 0.3035 0.3591

Table IX
AUTHOR CLASSIFICATION ERROR OF DIFFERENT MODELS.

ac
tu

al
au

th
or

predicted author

clinton trump total

clinton 1362 166 1528

trump 181 1630 1811

total 1543 1796
Table X

CONFUSION MATRIX FOR LSTM AND DATASET V2 WITH PUNCTUATIONS.

reflect the views the author and make sense grammatically. The
RNN models are also able to learn where to put punctuations,
resulting in more natural and interesting sentences. The RNN
generated sentences tend to outperform the HMM model,
which is expected because of the HMM’s high test perplexity.

The web UI for sentence generation and author classification
using LSTM or GRU with dataset v2 with punctuation is
available at http://tiny.cc/cs229-pclm.

VII. CONCLUSION AND FUTURE WORK

Using the debates transcripts and Twitter posts, we are
able to build language models that can learn and model
the vocabulary and the sentence structure of Hillary Clinton
and Donald Trump. We find that the RNN language models
outperform the HMM language model due to the ability of
RNN to use the knowledge of many previous words. In
particular, the LSTM RNN model performs the best. The RNN
models also outperformed conventional ML models and the
HMM model in the author classification task.

To improve our results in the future, we will continue
to add to the Clinton and Trump datasets. As indicated by
[6], an order of magnitude larger corpus of spoken words
by the two candidates can lead to dramatically improved
results. We will also try different types of LSTMs (e.g. LSTM
with peephole), as well as perform further hyperparameter
(embedding vector size, dropout keep probability, etc.) tuning
to see which parameters lead to optimal results. Another
approach is to add temperature to the softmax, where higher
temperature might lead to more interesting sentences. Trying
each of these different parameters via a parameters search can
allow us to find models that best generalize to the Clinton-
Trump dataset and reduce the test perplexity even further.

Lastly, we also want to improve the web user interface
by adding more features, such as sentence generation and
classification using HMM.

5

http://tiny.cc/cs229-pclm

REFERENCES

[1] L. Mascaro, “’believe me’: People say trump’s language is af-
fecting political discourse ’bigly’,” http://www.latimes.com/politics/
la-na-pol-trump-language-20160912-snap-story.html, [Online; accessed
20-November-2016].

[2] K. Murray, “A computational linguistic analysis of the 2016 presiden-
tial candidate,” http://kentonmurray.com/blogs/comp linguistic 2016.
html, [Online; accessed 20-November-2016].

[3] S. Slobin, “A computer watched the debates. it thought clinton was
happy and trump was angry and quite sad,” http://qz.com/810092/
a-computer-watched-the-debates-and-thought-clinton-happy-trump-angry-sad/,
[Online; accessed 20-November-2016].

[4] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for
language modeling.” in Interspeech, 2012, pp. 194–197.

[5] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” CoRR, vol. abs/1409.2329, 2014. [Online]. Available:
http://arxiv.org/abs/1409.2329

[6] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” Journal of Machine Learning Re-
search, 2015.

[7] M. L. Jockers and D. M. Witten, “A comparative study of machine
learning methods for authorship attribution,” Literary and Linguistic
Computing, p. fqq001, 2010.

[8] E. Stamatatos, “A survey of modern authorship attribution methods,”
Journal of the American Society for information Science and Technology,
vol. 60, no. 3, pp. 538–556, 2009.

[9] P. Vijayaraghavan, S. Vosoughi, and D. Roy, “Automatic detec-
tion and categorization of election-related tweets,” arXiv preprint
arXiv:1605.05150, 2016.

[10] C. Leuprecht and D. B. Skillicorn, “Incumbency effects in us presidential
campaigns: Language patterns matter,” Electoral Studies, 2016.

[11] E. Loper and S. Bird, “Nltk: The natural language toolkit,” in Proceed-
ings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics
- Volume 1, ser. ETMTNLP ’02. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2002, pp. 63–70. [Online]. Available:
http://dx.doi.org/10.3115/1118108.1118117

[12] Y. Bengio, “Neural net language models,” http://www.scholarpedia.
org/article/Neural net language models, 2008, [Online; accessed 12-
November-2016].

[13] “Recurrent neural networks,” https://www.tensorflow.org/versions/r0.11/
tutorials/recurrent/index.html, [Online; accessed 12-November-2016].

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[15] C. Olah, “Understanding lstm networks,” http://colah.github.io/posts/
2015-08-Understanding-LSTMs/, Aug. 2015, [Online; accessed 12-
November-2016].

[16] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[17] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation,” ArXiv e-
prints, Jun. 2014.

[18] D. Ramage, “Hidden markov models fundamentals,” http://cs229.
stanford.edu/section/cs229-hmm.pdf, Dec. 2007, [Online; accessed 21-
November-2016].

6

http://www.latimes.com/politics/la-na-pol-trump-language-20160912-snap-story.html
http://www.latimes.com/politics/la-na-pol-trump-language-20160912-snap-story.html
http://kentonmurray.com/blogs/comp_linguistic_2016.html
http://kentonmurray.com/blogs/comp_linguistic_2016.html
http://qz.com/810092/a-computer-watched-the-debates-and-thought-clinton-happy-trump-angry-sad/
http://qz.com/810092/a-computer-watched-the-debates-and-thought-clinton-happy-trump-angry-sad/
http://arxiv.org/abs/1409.2329
http://dx.doi.org/10.3115/1118108.1118117
http://www.scholarpedia.org/article/Neural_net_language_models
http://www.scholarpedia.org/article/Neural_net_language_models
https://www.tensorflow.org/versions/r0.11/tutorials/recurrent/index.html
https://www.tensorflow.org/versions/r0.11/tutorials/recurrent/index.html
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://tensorflow.org/
http://cs229.stanford.edu/section/cs229-hmm.pdf
http://cs229.stanford.edu/section/cs229-hmm.pdf

	Introduction
	Related Work
	Dataset and Features
	Language Models
	Long Short Term Memory (LSTM)
	Gated Recurrent Unit (GRU)
	Hidden Markov Model (HMM)

	Language Model Applications
	Sentence Generation
	Author Classification

	Results and Discussion
	Conclusion and Future Work
	References

