

1

Encoding the natural response of primate retina
Category: Life Sciences

Nandita Bhaskhar1, Ananth Saran Yalamarthy2 & Arushi Arora1
Email IDs: {nanbhas, ananthy, arushi15}@stanford.edu

[1] Dept. of Electrical Engineering, Stanford University

[2] Dept. of Mechanical Engineering, Stanford University

1. Abstract:

Developing encoding models that estimate the functionality of a retina are immensely valuable, not only to get

insight into complex visual pathways in the human brain but also to enable brain-machine-interfaces of the future

such as a retinal prosthesis. We aimed to harness approaches from machine learning and neural networks to better

model the natural encoding that takes place in the retina. In this project, we implement two models: a Linear

Nonlinear Poisson (LNP) model and deep learning models (Convolutional Neural Networks or CNNs) to predict spike

trains, given visual stimuli composed of white noise images. We find that the relatively simple baseline LNP model

shows a best correlation of ~30% and that CNNs achieve comparable performance ~19%, which we believe is limited

by the time we had (two weeks) to experiment with different architectures and to train the network. We believe

experimenting with different CNN architectures, using combinations of CNNs and RNNs and using a different dataset

may increase model performance.

2. Introduction:

The retina represents the first stage in our highly sophisticated visual processing unit. With only three layers of cells,

its neurons transform the entire visual scene into spike patterns. At its simplest, the visual image detected by the

photoreceptors in the last layer is sent to the Retinal Ganglion Cells (RGCs) in the front layer. There are ~20 different

types of RGCs; we model two of the most prominent ones – ON cells (spike on detecting light) and OFF cells (spike on

detecting darkness). These spike responses are what are sent to the brain via the optic nerve [1].

An accurate model of the retina is essential to understand the early computations performed by our visual system

(Fig. 1). It is relatively less complicated to obtain characterization data from the retina as compared to any other

processing unit because of its easy accessibility. Apart from just better understanding the visual system, a good

encoding model of the retina will allow development of retinal prosthetic devices that could mimic the function of

an intact retina in a blind eye by electrically stimulating neurons to transmit artificial signals to the brain.

While in the past, the retina was thought to act just as a “pre-filter” for visual stimuli, recent studies have shown that

the retina performs complex non-linear computations [2]. The presence of linear and non-linear computing units in

the retina have led to the simplistic LNP model [3] and later the Generalised Linear model (GLM) based on maximum

likelihood that considers the complex interactions of a retinal cell with its neighbours [1]. However, though some of

these models could provide good approximations for retinal responses to Gaussian white noise, none were able to

encode the responses for natural scenes [2]. We hope to establish a model that can accurately predict retinal

responses to arbitrary stimuli. The complex and non-linear organization of the retina make deep learning and neural

networks strong contenders for such a model.

Figure 1. (left) The stimulus movie consists of a series of white noise images each of frame size 80 pixels x 40 pixels shown to the primate
retina at a refresh rate of 120 Hz. The Retinal Ganglion Cells in the retina send out spike trains in response to this visual stimulus to the optic
nerve. The aim is to create a model that can perform this encoding to eventually help create an artificial retina. (right) a single frame of input.

2

3. Data:

We use the unique large-scale multi-electrode recordings (dozens of data sets with hundreds of cells each) that

Professor E. J. Chichilnisky's lab in the Dept. of Neurosurgery at Stanford University have collected by stimulating

RGCs in primate (macaque monkey) retina with movies of white noise. Primate retina is exceedingly similar to the

human retina which makes this data invaluable in making predictions about the human visual system.

The input data shown to the retina consists of sixty 2-D training movies of a certain duration Ὀ (Fig. 1) refreshed at

120 Hz making each input movie of size 80 x 40 x Ὀ. For every RGC that is shown the input movie, there is a

corresponding output vector containing its cell spike times. For the LNP model, we also use a Spike triggered average

(STA) matrix for each, which refers to the RGC's receptive field as explained later. The test data consists of a distinct

test movie stimulus shown sixty times to obtain sixty repeats of each RGC's response.

4. Problem Formulation:

For each identified RGC, given ά training examples ὼ ȟώ ȟὭ ‭ ρȟςȟȣȟά where ὼ corresponds to a movie of

frame size ὒ x ὄ and duration Ὀ seconds (ὔ frames at refresh rate ὶ) and ώ ρὸ observed a spike , where

Ὦ ‭ ρȟςȟȣȟ ὈȾὶὩίέὰόὸὭέὲ represents the observed spike train in the RGC, the goal is to predict ώ for a test ὼ

repeated ὲ times such that Ὡὶὶώ ȟώ is minimum for a reasonable error metric “Ὡὶὶ”.

5. LNP Model Implementation:

The LNP model was chosen as the baseline because though it is simpler than the GLM, it does consider first order

nonlinearities which simpler models do not. It is extremely robust to fluctuations in responses, avoids adaptation to

prolonged stimuli and is well suited to simultaneous measurements from multiple neurons [4]. This model is

sufficiently interpretable as opposed to classical linear representations of neurons. The LNP model consists of a

linear block, followed by a non-linear estimate of the firing rate, subjected to a Poisson process for spike generation

(Fig. 2).

The duration Ὀ is divided into bins of size ɝὸ (usually chosen as ρὶϳ where ὶ is the refresh rate). The neural response

Ὢ is defined as the number of spikes observed in time bin ὸ. For a certain time bin ὸ, vector ί is defined to be a fixed

fraction of the stimulus movie immediately preceding ὸ, Ὀᶻ ὔᶻ in frames), chosen to exceed the memory of the

neuron, i.e., the period over which a stimulus can affect the response. Thus, the key assumption here is that

response Ὢ at time ὸ depends only on ί. A successful model should predict the average number of spikes per time

bin observed after the presentation of any stimulus [4]. Here, ί is a Ὧ-dimensional vector where Ὧ ὒ x ὄ x ὔᶻ.

5.1) The first step in the LNP model is the linear filter which is the spike triggered average (STA) vector, The STA .‫

stimulus is defined as the average stimulus preceding a spike in the response i.e. the sum of the stimuli that

preceded each spike divided by the total number of spikes [4]. Mathematically, ‫ В ίὪ В Ὢϳ , where, ὸ is

the time bin index over the duration Ὀ. Thus, the linear part of the model, can be directly estimated from the ,‫

given output spike train and is also a Ὧ-dimensional vector. This STA vector indicates how the neuron weights

different spatial and temporal components of the stimulus. The spatial structure of describes the neuron’s ‫

receptive field (Fig. 3a, Fig. 3d) that isolates a region of visual space that the neuron is active to. The temporal

structure of represents the impulse response of the underlying linear summation (Fig. 3b, Fig. 3e). The memory of ‫

the cell can be assessed by examining the duration of the impulse response i.e. the time offset from the spike at

which the STA converges to 0 [4]. The neural response to be modelled is the average spike count Ὢ in the time bin

immediately following a stimulus ί, i.e. the expected response to the stimulus Ὑί ╔Ὢ ȿ ί В Ὢ ὖὪȿί. The

simplifying assumption made in the LNP model is that Ὑ is a static non-linear function of a real valued linear function

of the stimulus. Thus, Ὑί ὔ,Ȣί where Ȣ represents the scalar dot product between two vectors. Thus ‫

stimulus entries ί are weighted by the fixed STA vector and summed to give the generator signal Ὣ ‫ Ȣί ‫

Figure 2. Block diagram of LNP model. Input stimulus first transforms into a generator signal using a linear function. The Nonlinear block
transforms the generator signal into a spiking rate. The Poisson statistics transform that output into spikes.

3

5.2) The second step, i.e. the nonlinear filter, is given by the static nonlinear function ὔ. This function is estimated by

averaging Ὢ across time bins that give rise to the same generator signal Ὣ. Since the stimulus was Gaussian white

noise, roughly the same generator signal will be observed at many times during the stimulus presentation. If Ὄ is a

collection of time bins having roughly similar generator signals, i.e. if Ὣ ὫӶȟᶅ ὸɴ Ὄȟ then ὪӶ is the average of all Ὢ

where ὸɴ Ὄ. This also implies that ὔὫӶ ὪӶ. Thus, by plotting ὪӶ ὺί ὫӶ for different values, the nonlinear function

ὔ can be estimated [4].

The nonlinearity is clearly

visible from the plots (Fig.

3c, Fig. 3f) and we found

the best sigmoidal

function fit. This is used

because it indicates that

saturation in the firing

rate occurs at the

extremes of the generator

signal. An optimization is

run [5] to find the four

parameters that lead to

the best generalized

sigmoidal fit to the data

(solid line in Fig. 3 c,f).

5.3) The third step is spike

generation using the

Poisson process that takes

Ὑί as input and predicts

a spike at time instant ὸ

by comparing Ὑίɝὸ to

a random number

between 0 and 1 from a

uniform distribution [6].

5.4) Results: The model was tested on data consisting of a test movie having ὲ repeats. The trained ὔ and STA ‫

are used ὲ times to produce ὲ spike trains. The average spike train is calculated by taking mean of the ὲ trials for

both the predicted and actual spike trains and the correlation between the predicted and actual outputs ranges from

11.4% to ~30% for different neurons with the best one being 29.7% for an OFF cell and 30.7% for an ON cell (Fig. 4).

5.5) Discussion: The LNP model is simplistic and makes many fundamental and not completely accurate assumptions

about the retina. To mention a few, it assumes a single non-linear function captures all the nonlinearities in the

retina and that variability of the spike generation can be modeled with a simple Poisson process. Thus, it is not

surprising that even though in terms of correlation coefficient it has a decent performance, the plots in Fig.4 follow

the trend only to a certain extent.

Figure 4. Comparison of
predicted and actual spike
trains for OFF cell (left)
correlation coefficient = 29.7%
and ON cell (right) ς correlation
coefficient = 30.7%

Figure 3. a) Spatial profile of STA for an ON-cell at a time instant (circled region shows centre of receptive
field) b) The temporal profile of STA for an ON-cell. c) The scatter plot shows the actual spike rate as a
function of generator signal. The solid line shows the optimized sigmoid fit for the generator signal. d-f)
Same as (a-c) for an OFF-cell.

4

6. Deep Learning Implementation:

Recent research on salamander retina has shown that deep learning methods can lead to high correlation

coefficients (χπϷ for spike train prediction [7] [8]. In view of this, we explored the use of deep learning models

to eliminate the inherent assumptions of the LNP model (namely, the existence of separate linear and non-linear

blocks, as well as a Poisson process for spike generation). In addition, from all the available modelling options, a

neural network seems most likely to be able to capture the complexity of the retina.

6.1) Data & Network Architecture: The data used for training the CNN is the same as that used for the LNP model,

namely Gaussian binary white noise movies (which can include all spatial and temporal frequencies as well as ς

patterns in a given frame). However, the data was structured a little differently to make it compatible for training the

neural network. Each training example ὼ for the CNN was an input movie, ὒ ὄ Ὀᶻ ὔᶻframes , where ὔᶻ

was chosen to be 10 most recent frames (~0.083s) to optimize for network training time. Note that 10 frames were

chosen using the intuition we developed from the STA (this can be seen in Fig. 3b, 3e, where ~0.1s of image time

history determines spiking). To make the training outputs amenable for deep learning, the binary spike trains from

the output vector spike train data, ώ was convolved with a Gaussian filter with standard deviation equal to the bin

size ɝὸ, as can be seen in Fig. 5(b) to get a smoothed output ώ [7]. These outputs account for the inherent

variability in the spike times that are observed in the retina and are also representative of the test data that we will

compare against, since those are averaged over ὲ repeats as described in section 5 (which can be thought of as

some kind of smoothing). In summary, for training we used 5 minutes of movie data stimuli corresponding to a set

of ὼ ȟὭ ‭ρȟςȟȣȟάᴂ where ά σφȟπππ, trained against smoothed, normalized outputs that represent the spike

train ώ ȟὭ ‭ρȟςȟȣȟάᴂ. Fig. 5(a) discusses an architecture of the Convolutional Neural Network (CNN) that we

implemented. The input image is convolved with a series of filters and pooling layers (with ReLU activations), as seen

in 5(a), and eventually a dense layer with a sigmoid non-linearity that represents a spiking probability in time bin ὸȢ

6.2) Platform, Loss & Evaluation Metrics: We used Keras (with Theano as backend) as our modelling platform which

allows for rapid prototyping with neural networks. Since the outputs of our CNN are normalized spiking probabilities

trained against ώ ᶰπȟρ, we used ὒ В ώ logώ+ ρ ώ log(ρ ώ) , which is the binary cross-entropy

loss (or logloss). This performs much better than using the mean-squared error loss, which often gave us predictions

with very low variance (all values around the mean of ώ , similar to that observed in [7]). To characterize the

performance of our CNN, we used correlation coefficient as our performance metric in accordance with LNP results.

6.3) CNN Hyper-parameters: The most important parameters we tweaked were (a) the CNN architecture (b) the

CNN’s weight matrices, which were initialized via a uniform distribution with a scale parameter ί and (c) learning

rate (ὰὶ) of the CNN. We found the fitting behaviour to be very susceptible to ί , with small values showing low

variance in outputs, while large values showing vice-versa. We found scale factors of around ~0.1-0.3 to work well in

practice. Higher learning rates (~υ ρπ ρπ) were found to well in practice. We did not experiment with

varying ὰὶ as a function of epoch.

6.4) Results: During our initial trials, our network would converge at outputs that predicted the mean of ώ with very

low variance, which is characteristic of underfit. Thus, we focused our initial efforts on finding sets of hyper-

parameters to overfit the training data and produce high training correlations. We chose this strategy knowing that

Figure 5(a). Example CNN architecture used. The 1st layer uses filters. In later layers, the depth of the CNN is preserved, while the
spatial dimensions are reduced using pooling layers. A dense sigmoid layer at the end produces a single output that represents the spiking
probability. (b) Image showing the raw spike trains ◐ recorded, as well as the smoothed output ◐▼ which is used for training the CNN
weights.

5

once we had overfit the training data, we could carefully tweak our CNN to best handle our training data. Figure 6

depicts this process.

Once we obtained CNN parameters that were representative of overfit behaviour, we tested the CNN performance

on the test data set (same one used for the LNP) and retrained the parameters on validation loss. Results for the

same ON cell are shown in Fig. 7, with ” as the correlation between ώ and ώ. In the top panel, we present some

results which support relatively small ί values and high learning rates. The bottom panel shows our best result,

with ” ςͯπϷ and a corresponding ” χͯυϷ.

7. Conclusions and Future Work:

We have implemented two models to encode the retina – the traditional Linear NonLinear Poisson model as well as

a deep learning neural network model. The simplistic LNP model shows better test results ” σͯπϷ when

compared to the CNN as of now (” ςͯπϷ. As discussed in section 5.5, there are several limitations to LNP but

given enough time, the CNN can be tuned to minimise test error considerably since CNNs have the necessary

complexity to encode the retina. There are several architecture changes that can lead to better results such as

adding 3D convolution, including an LSTM layer in the end, exploiting the advantages of RNNs given the time

dependence of our data. Another thing to try is to encode different cells in the retina, literature shows [7] that

different RGCs give different correlations when trained on the same model. It could be that we’ve used a neuron

that has an intrinsic low correlation coefficient.

Acknowledgements: We’d like to thank Professor EJ Chichilnisky for sharing the dataset with us and Nora Brackhill, Vishakh

Hegde and Ashwin Paranjape for immensely useful discussions. Thanks to Bo Wang (our TA) for valuable feedback.

 #Neurons Learning Rate (x1e-4)

Scale 10 5 1

0.2
64 0.98 0.993 0.44

32 0.978 0.996 0.817

0.25
64 0.9795 0.991 0.478

32 0.9845 0.935 0.355

0.3
64 0.989 0.947 0.368

32 -0.012 -0.012 -0.012

Figure 6(a). Table showing subset of experiments to determine CNN hyperparameters for overfit. The values correspond to correlation
coefficients observed after 25 epochs. Best fits are observed at low ▼╒╝╝ and high ■► values. b) A magnified section of the fit on the training
data for the best parameters in Table (a). Note that the CNN can overfit the data very well. c) Corresponding loss function over 25 epochs.

Key:

Red - Predictions

Blue ς Ground

Truth

X-axis (for all)

Time (arbitrary

units)

Figure 7. Upper panel: A depiction of results where poor test set performance was observed due to (a) large scale factors, (b) low learning
rates and (c) regularization which consistently lead to prediction around the mean of the ground truth. Lower panel: (d) Best test set
correlation performance (ⱬ◄▄▼◄ͯ Ϸ . (e) The corresponding fit for the training data where training correlation is about Ϸ indicating
reasonable fit. We trained the network for ~75 epochs.

6

References:

[1] Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP, "Spatiotemporal correlations and

visual signalling in a complete neuronal population," Nature, pp. 454-995, 2008.

[2] Zrenner E, "Fighting blindness with microelectronics," Sci Transl Med, vol. 5, no. 210, p. 126.

[3] Field GD, Chichilnisky EJ, "Information processing in the primate retina: circuitry and coding," Annu Rev Neurosci,

vol. 30, no. 1.f, 2007.

[4] Chichilnisky EJ, "A simple white noise analysis of neuronal light responses," Comput. Neural Syst., vol. 12, pp. 199-

213, 2001.

[5] https://www.mathworks.com/matlabcentral/fileexchange/42641-sigm-fit, "Sigmoid fit from Mathworks".

[6] Heeger D, "Poisson Model of Spike Generation," http://www.cns.nyu.edu/~david/handouts/poisson.pdf, 2000.

[7] McIntosh L, Maheswaranathan N, "A Deep Learning Model of the Retina,"

http://cs231n.stanford.edu/reports/lanemc_final.pdf.

[8] McIntosh L, Maheswaranathan N, Nayebi A, Ganguli S, Baccus SA, "Deep Learning Models of the Retinal

Response to Natural Scenes," Advances in Neural Information Processing Systems 29 (NIPS 2016) pre-

proceedings, 2016.

