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1 Introduction 
New York City taxi rides paint a vibrant picture of life in the             
city. The millions of rides taken each month can provide          
insight into traffic patterns, road blockage, or large-scale        
events that attract many New Yorkers. With ridesharing apps         
gaining popularity, it is increasingly important for taxi        
companies to provide visibility to their estimated fare and         
ride duration, since the competing apps provide these metrics         
upfront. Predicting fare and duration of a ride can help          
passengers decide when is the optimal time to start their          
commute, or help drivers decide which of two potential rides          
will be more profitable, for example. Furthermore, this        
visibility into fare will attract customers during times when         
ridesharing services are implementing surge pricing.  
 
In order to predict duration and fare, only data which would           
be available at the beginning of a ride was used. This           
includes pickup and dropoff coordinates, trip distance, start        
time, number of passengers, and a rate code detailing whether          
the standard rate or the airport rate was applied. Linear          
regression with model selection, lasso, and random forest        
models were used to predict duration and fare amount.  
 

 2 Related Work 
The fare of a taxi ride is function of the mileage and the             
duration of the ride (sum of drop charge, distance charge and           
time charge). The drop charge is constant and the distance          
can easily be estimated but evaluating the duration is not a           
trivial task. It is the result of complex traffic processes that           
are nonlinear. 
  
One way to predict duration is by doing short term prediction           
with the help of real time data collection. In [1] the authors            
tackle the problem by using data from from buses (GPS) and           
an algorithm based on Kalman filters. Using a similar         
approach, [2] uses real time data from smartphone placed         
inside vehicles. 
Estimating travel time for highways yields better results        
than in the cities. This allows for more accurate predictions.          

In [3] the authors use a combination of traffic modelling, real           
time data analysis and traffic history to predict travel time in           
congested freeways. They try to overcome the assumption        
that real time analysis communication is instantaneous. A lot         
of other papers also work on freeways. In [4] the prediction is            
done using Support Vector Regression (SVR) while in [5]         
Neural Networks (SSNN) are used. 
 
Predictive estimates of future transit times is a feature that          
was released in 2015 in the Google Maps API [6]. This           
shows the importance of being able to predict time travel          
without having real time data of traffic. 
 
We are trying to solve a similar problem: estimating ride          
duration without real time data, by analysing data collected         
from taxis. Being able to do such estimation would help          
making better future predictions. 
 

3 Data 
The data used in this study are all subsets of New York City             
Taxi and Limousine Commission’s trip data, which contains        
observations on around 1 billion taxi rides in New York City           
between 2009 and 2016. The total data is split between          
yellow taxis, which operate mostly in Manhattan, and green         
taxis, which operate mostly in the outer areas of the city. For            
the main analyses of this study, the data for yellow taxi rides            
during the month of May 2016 were used, although the          
models were validated on additional data. Since each month         
consists of about 12 million observations, and there were         
computational limitations, subsets of the monthly data were        
used for model building, and other subsets were used for          
validation. To build the models, a random subset of 10,000          
observations from May 2016 were used, of which 8,000 were          
used for training and 2,000 for validation. 
 
The original dataset contains features as pickup and dropoff         
locations, as longitude and latitude coordinates, time and date         
of pickup and dropoff, ride fare, tip amount, payment type,          
trip distance and passenger count (as well as other, for this           
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study, less relevant variables). The data was processed to         
extract separate features for year, month, day, weekday, hour         
and minute from the date and time of each ride, as well as             
trip duration as the difference between dropoff and pickup         
time. Furthermore, with the objective to model and account         
for traffic in the predictions, two more features were         
calculated from the data; rides in an hour and average speed           
during the hour. Rides in hour represents the number of          
started rides within the hour of each observation, and the          
average speed represents the average speed of all those rides.  
 
Figure 1 show the distributions of ride duration and fare          
amount, which are clearly similar (the spike at $52 represents          
rides to JFK International airport). The objective of this study          
has been to predict both, although as the results and models           
chosen are very similar, the illustrations and results have         
been focused on the  prediction of trip duration.  

 
Figure 1: Duration  and Fare Amount Distribution 

 
4 Models and Methodology 

 
4.1 Linear Regression 
As a baseline prediction, the mean duration and fare from the           
training set were used to predict a constant value for the           
validation set.  

Model Selection

 
Figure 2: Forward Selection for Linear Regression 

 
To avoid selecting a sub-optimal model by selecting        
covariates by hand, forward selection was used to identify         
which subset of covariates would be best to use. When          
iteratively adding the variables that minimizes the RSS one at          
a time it is evident that selecting a model with all covariates            
does not improve the Cp score (proxy for test error) over a            
20-covariate model (figure 2). Therefore, for simplicity       
reasons, the smallest model was selected for linear        
regression. 
 

Lasso 
To further confirm the best set of covariates to use, the lasso 
method was used to shrink coefficients. Lasso results in a 
sparser model, which makes interpreting the model easier. 
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For both the fare and duration prediction models, lasso was          
run using a range of values for the penalizing parameter, .          λ  
Cross validation was used to find the lasso model with the           
lowest error and select the value of to use. In both cases,       λ       
the values that gave the lowest cross validation error were λ           
close to zero. For example, the optimal parameter for the       λ     
fare regression was . Because of these results,   .19 01 · 1 −5      
variables were not penalized using lasso, and the linear         
regression model selected with forward selection was used.  
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Linear Regression Model 
From feature selection, the linear regression with all 
covariates available at the pickup time was predicted to be 
the best for both duration and fare prediction. The linear 
regression model finds the set of coefficients that minimizeθ  
the sum of squared errors 

 θ xy(i) =  0 + ∑
 

j
θj j

(i)     (2) 

 
Interaction and Higher Order Terms 
Because the available covariates alone cannot model the        
nonlinear effects of traffic, interaction and higher order terms         
are considered to allow the model to fit these effects more           
closely. Plotting the covariates used in the linear models         
against each other shows that there are no strong correlations          
between them, which suggests that interaction terms should        
not be included in the model.  
 
However, second order terms do make logical sense to be          
used in the model. Since the nonlinearities arise out of traffic           
patterns, it can be assumed that longer distance trips         
experience more instances of traffic. Therefore, adding       
squared trip distance to the model would increase the trip          
distance’s importance in the duration and price prediction.  
 
4.2 Random Forest 
As traffic is clustered and aggregated more densely to         
different locations at different times, the location of the ride          
will clearly have an affect on the trip duration. Although          
there is no straightforward way of considering all locations         
between the start and end points of a ride, the pickup and            
dropoff locations are available in the dataset and can be used           
to model some of the effect of traffic and conjunctions. In the            
linear regressions, the locations’ effect on trip duration is         
modeled simply by the magnitude of the longitude and         
latitude coordinates. As traffic is clearly not varying solely         
based on the magnitude of the coordinates, the linear models          
fail to account for the nonlinear effect the locations have on           
traffic and hence trip duration (and also fare amount). An          
algorithm that can better account for these nonlinearities is         
the random forest. 
 
The random forest algorithm aggregates many decision trees        
built on bootstrapped samples of the training data in order to           
reduce the high variance of a single decision tree and          
improve prediction accuracy [7][8]. Each of these decision        
trees aims to divide the predictor space, i.e. the set of all            

possible values for the features , in distinct and     , , ..,x1 x2 . xn   J    
non-overlapping regions . The predictor space is  , , ..,R1 R2 . RJ      
divided into high-dimensional rectangles, with the goal to        
find rectangles that minimize the RSS,, , ..,R1 R2 . RJ  
 

  ∑
J
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∑
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   (3) 

 
where is the mean response for the training observations  y︿Rj

        

within the j th rectangle. When building each tree, a top-down          
approach is taken. Beginning with all points in the same          
region, the algorithm successively splits the predictor space        
into two halves, stopping when there are no more than five           
points in a region. At each split, a prediction and cutpoint         xj    

are chosen such that splitting the predictor space into thes            
regions and leads to the biggest x | x }{ j < s   x | x }{ j ≥ s      
reduction in RSS. Defining the pair of halves as and         (j, )R1 s   

, at each split we seek to find and that minimize(j, )R2 s         j   s    
the equation 
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Once the regions are defined, a prediction by a single tree is            
made by averaging the responses of the training observations         
in the region to which the test observation belongs. In the           
random forest, a large number of trees are fit, each using a            
bootstrap sample from the training data, and a prediction of a           
new observation is made using the mean of the predictions by           
all the trees. At each split, only of the total predictors       m     n   
are randomly chosen to be considered. This approach is taken          
to decorrelate the trees, as considering all predictors might         
yield very similar trees when one or a few predictors are           
particularly strong. As averaging many uncorrelated trees       
leads to a larger reduction in variance, this approach often          
yields better prediction results. As can be seen in figure 3, the            
model performs better for a smaller choice of . Also,        m   
averaging over a larger number of trees yields a better results,           
although the effect is flattening out after a few hundred trees.           
To optimize prediction accuracy, and 500 trees were    m = √n      
used. 
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Figure 3: Effect of m on Random Forest Results 

 
As discussed above, a training sample of 8,000 observations         
were used to train the models. Although the random forest          
performs better when trained on a larger sample size, the          
incremental improvement is decreasing with the number of        
observations. As seen in figure 4 the effect of using a larger            
training set is very small for a training set with more than            
4,000 observations. 
 

 
Figure 4: Random forest performance with larger training size 

 
Figure 5 below shows the a variable importance plot for the           
random forest model on trip duration. The variables for rides          
in hour and average speed in hour explain the most variance,           
supporting them as ways of modeling at least parts of the           
effect of traffic. 

 
Figure 5: Random forest variable importance 

 
Coordinate Transformation 
One additional approach taken to further model the effect of          
the pickup and dropoff locations was to transform the         
coordinates [9]. Most of the streets and avenues in Manhattan          
are aligned in a grid structure. With the hypothesis that the           
avenue or street could explain some of the effect of the           
location, transforming the coordinates so that the splits in the          
random forest algorithm will be made aligned and        
perpendicularly to the avenues and streets, could potentially        
yield better predictions.  
 

 
Figure 6: Transformation of location coordinates 

 
Finding two points on the same avenue on opposite sides of           
Manhattan, the angle to rotate the coordinates was   ϕ       

calculated to 36.1° using the differences in longitudes and         
latitudes. The rotated coordinates were then calculated using        
equation (5) and (6), 
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 cos(ϕ)  sin(ϕ)xrot = x − y  (5) 
 sin(ϕ)  cos(ϕ)yrot = x + y  (6) 

 
where  is the location longitude and  the latitude.x y  
 

5 Prediction Results and Discussion 
 

Prediction % Error 
Validation 

RMSE 
Validation 

RMSE 
Train 

Fare amount 
Baseline mean 

54.2% $10.45 $10.36 

Fare amount 
Linear 
regression 

21.1% $3.52 $3.04 

Fare amount 
Random forest 

14.0% $2.28 $2.16 

Duration 
Baseline mean 

97.8% 12.05 min 11.43 min 

Duration 
Linear 
regression 

38.5% 6.51 min 6.17 min 

Duration 
Random forest 

24.3% 5.24 min 5.09 min 

Table 1: Transformation of location coordinates 
 

5.1 Linear Regression Prediction Results 
The linear regression improves its predictions as covariates        
are added to the model. However, there is a limit to its            
performance. At a certain point, adding more higher order         
terms or training on more data does not improve predictions.          
As discussed previously, this is a result of the nonlinear          
patterns in traffic, which affects both duration and fare.  
 
5.2 Random Forest Prediction Results 
The random forest model outperform all other models used,         
as it manages to model the nonlinearities of traffic and          
location effect. Although the model accounts for the effect of          
pickup and dropoff locations, it has no way of modeling the           
effects of the locations along the route. A ride between two           

locations with high traffic can still be relatively fast if it goes            
through high-speed areas with little or no traffic. Considering         
what is accounted for in the models, they are believed to           
predict both duration and fare relatively precisely.  
 
Although using rides in hour and the average speed in hour           
improves the models and hence works as proxies for traffic          
modeling, rotating the location coordinates does not yield any         
significant improvement in prediction accuracy.  
 
5.3 Comparison to External Predictions 
As a benchmark, duration predictions by Google Maps, and a          
fare prediction by a tool on the Taxi Fare Finder website [10]            
were explored. As an example, for a ride between the          
Empire State Building and Brooklyn Bridge the tool predicts         
a price in the range between $17 and $59 depending on           
traffic. For the same ride, on a Tuesday around noon, Google           
Maps predicts it to take between 12 and 22 minutes. Our           
model predicts the ride to take 18 minutes and cost around           
$25. The models clearly make similar predictions to the tool          
and Google Maps, that both make predictions in a very wide           
range. With an average error around $2 and 5 minutes the           
models seem to make precise predictions comparing to the         
tool and Google Maps. 
 

6 Conclusions and Future Work 
Considering what is and what is not accounted for in the 
models built in this study, their predicting results are fairly 
accurate. To further improve the prediction accuracy, more 
variabilities need to be considered and modeled. Although 
the rides in hour and average speed in hour work as proxies 
for traffic, more modeling on the effect of location is needed. 
These quantities could be calculated for different areas to 
further model local effects of traffic. Also, modeling traffic 
and the effect of location in between pickup and dropoff 
points should be considered as well as difference in drivers’ 
speed. 
 
These further steps could be taken both by analyzing larger 
sets of the data to infer relationships and effects of location 
and traffic at different times, as well as aggregation with 
other datasets, as data on traffic, speed limitations, etc. 
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