
Measuring Artistic Similarity of Paintings
Jay Whang, Yancheng Xiao and Buhuang Liu
Stanford Center for Professional Development / Google

Objective

In this project, we survey various techniques for
the task of artist similarity detection, where a ma-
chine is asked to determine if two given paintings
are by the same artist. Specifically, we compare
the performance of manually-engineered features
to that of a neural network in both online and
offline settings.

Data

The data is obtained from the official Kaggle compe-
tition “Painter by Numbers” [1]. The training data
includes 79433 paintings coming from 1584 artists in
JPEG format, and 23817 paintings in the test set.
While the dataset contains other metadata such as
title, genre and style (e.g. Cubism), only the actual
image data was used for training and testing.

Challenges

We found the training data size to be the biggest
challenge. Out of 79433 paintings in the training
data, there are over 3.1 billion distinct pairs of paint-
ings that can be generated – a prohibitively large
number given our resources. To cope with this, we
generated a smaller version of the training set using
top 100 painters by number of paintings. We then
sampled 70 paintings from each painter, where 50 of
them were used to generate training data, and the
remaining 20 were used as validation set. Also, as
the number of different-artist pairs far outnumbered
same-artist pairs, we oversampled same-artist pairs
to have 1-to-1 ratio in the test set.

Experiment Setup

For all techniques we evaluated, images were trans-
formed into “feature vectors” in some way. Then,
a model was learned on top of the feature vectors
to determine whether the two paintings were by the
same artist or not.

Experiment Setup (cont’d)

Here are the algorithms that we evaluated:
•Manually-crafted rules
•Logistic Regression, Linear SVM
•Random Forest
•Convolutional Neural Network (CNN)
Except for the CNN, we converted the images into
feature vectors using various techniques from Com-
puter Vision, including: edge detection, pixel inten-
sity, hue intensity, aspect ratio, etc. For implement-
ing the CNN, we used Keras [2] and Numpy [3].

CNN Architecture

The following convolutional neural network architec-
ture was used to train a classifier that predicts the
artist label on individual paintings. Then we use the
output of the network as a feature vector, and use
cosine similarity for final classification. Batch Nor-
malization and Dropout were used as appropriate.

Input Image

Convolution (16,3,3)

Convolution (16,3,3)

MaxPool (2,2)

Convolution (32,3,3)

Convolution (32,3,3)

MaxPool (2,2)

Convolution (64,3,3)

Convolution (64,3,3)

MaxPool (2,2)

Fully Connected (2048)

Softmax (100)

Results & Discoveries

The following table includes accuracy values on
train/test sets from the best run for each algorithm.

Algorithm Train (%) Test (%)
Cosine Similarity N/A 50.1
Logistic Regression 52.5 54.5
Linear SVM 55.6 57.4
Random Forest 94.6 67.7
ConvNet N/A 59.9

Table 1: Performance of Different Algorithms

Combining Feature Vectors
We noticed that simply concatenating two feature
vectors and training a classifier does not work at all,
even doing worse than random guess (50%) in some
cases. Linear models cannot learn the interaction
between features across two paintings, so this was
expected. Also, notice that a single feature from
one painting reveals nothing about whether the two
paintings are similar or not. For this reason, we
postulate that Random Forest is unable to create a
good decision stumps and thus does poorly as well.
After multiple experiments, we discovered that using
the positive difference (i.e. abs(v1 − v2)) worked
the best. Conceptually, this quantity captures the
“relative distance” between two paintings.

Better Embedding from Fewer Classes
For the CNN, we trained the model on different num-
bers of artists and found out that the model that was
trained on to predict fewer (50) artists had better
similarity detection performance. We believe that
this is because predicting one artist out of 100 is
likely more difficult than for 50 artists. This may
have caused the trained model to be less optimal
for the 100 case, affecting the efficacy of embeddings
from it. Also, as the following plot shows, the CNN
models had a lot of trouble generalizing to the val-
idation set. Regardless of the regularization coeffi-
cient along with Batch Normalization and Dropout,
validation loss always stayed higher than train loss.
This suggests that the model was overfitting due to
its small capacity.

0 20 40 60 80 100
Epoch

0

5

10

15

20

25

Lo
ss

Figure 1: Plot of Train/Validation Loss for CNN

Conclusion

The task of artistic similarity detection was a sur-
prisingly difficult challenge, as evident from many
low-accuracy submissions on Kaggle [1]. Many sub-
tle changes were required just to make training work,
and even then the test accuracy is still below 70%.
Although Random Forest outperformed other mod-
els, we strongly believe that a larger CNN that is
trained on the entire data set will be the best model.
This also suggests that a Siamese Network trained
on top of two pre-trained CNNs could potentially do
better than simply resorting to cosine similarity.

References

[1] Painter by numbers | kaggle.
https://www.kaggle.com/c/painter-by-numbers.
Accessed: 2016-11-20.

[2] François Chollet.
Keras.
https://github.com/fchollet/keras, 2015.

[3] S. Chris Colbert StÃľfan van der Walt and GaÃńl
Varoquaux.
The numpy array: A structure for efficient numerical
computation, 2001.
Accessed: 2016-12-12.

https://www.kaggle.com/c/painter-by-numbers
https://github.com/fchollet/keras

