Uncertainty Quantification and Sensitivity Analysis of Reservoir Forecasts with Machine Learning

Motivation

- Uncertainty quantification is a key process for informed decision making in the development of oil/gas field.
- Global sensitivity analysis (GSA, Satelli et al., 2008) is based on Monte Carlo sampling and has been widely used in a lot of fields of science and engineering.
- Challenges to use GSA in reservoir forecasting includes multidimensionality of response (spatio-temporal) and large computations.
- In the project the goal is to propose the workflow to quantify uncertainty and sensitivity of reservoir forecasts with high computational efficiency.

Methodology

- High dimensionality is reduced by functional PCA (FPCA). •
- Regressions are performed to obtain a surrogate forward model of a full flow simulator. A boosting with regression trees is utilized.
- The regressors are used to compute sensitivity indices of GSA.

Global sensitivity analysis

- GSA is based on the decomposition of variance of response *Y*.
- First order sensitivity index S_i quantifies the main effect of each model parameter X_i to Y.

$$S_i = V[E(Y|X_i)]/V(Y)$$

Total effect S_{Ti} quantifies the effects of X_i to Y including all the interactions

$$S_i = 1 - V[E(Y|X_{\sim i})]/V(Y)$$

- For *n* Monte Carlo samples and *k* parameters, n(k + 2)simulations are required \rightarrow Computationally expensive to apply to reservoir simulations.
- *Y* is assumed to be univariate but reservoir responses are multivariate.

Jihoon Park (jhpark3@stanford.edu) **Department of Energy Resources Engineering**

Training data

Illustration of case study – Oil field in central northern Libya (Ahlbrandt, 2001)

	Table 1. Well Plan			
P2	Name	Туре	Boundary Condition	
	11	Injector	Constant rate, 10,000 bbl/day	
	12			
	P2	Producer	Constant bottom hole pressure, 1,000 psi	
	Р3			
	P4			

Fig. 1 Reservoir models for the case study

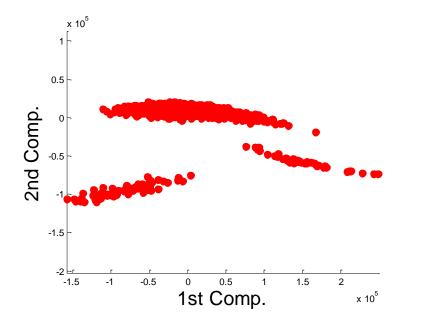

Distribution of uncertain parameters

Table 2. List of uncertain model parameters

Number	Parameters	Abbreviation	Distribution
1	Oil-water contact	owc	U[-1076, -1061]
2	Transmissibility multiplier of fault 1	mflt1	U[0, 1]
3	Transmissibility multiplier of fault 2	mflt2	U[0, 1]
4	Transmissibility multiplier of fault 3	mflt3	U[0, 1]
5	Transmissibility multiplier of fault 4	mflt4	U[0, 1]
6	Residual oil saturation	sor	$N[0.2, 0.05^2]$
7	Connate water saturation	SWC	$N[0.2, 0.05^2]$
8	Oil viscosity	oilvis	$N[10,2^2]$
9	Corey exponent of oil	oilexp	$N[3,0.25^2]$
10	Corey exponent of water	watexp	$N[2,0.1^2]$

Results

Dimensionality reduction with FPCA

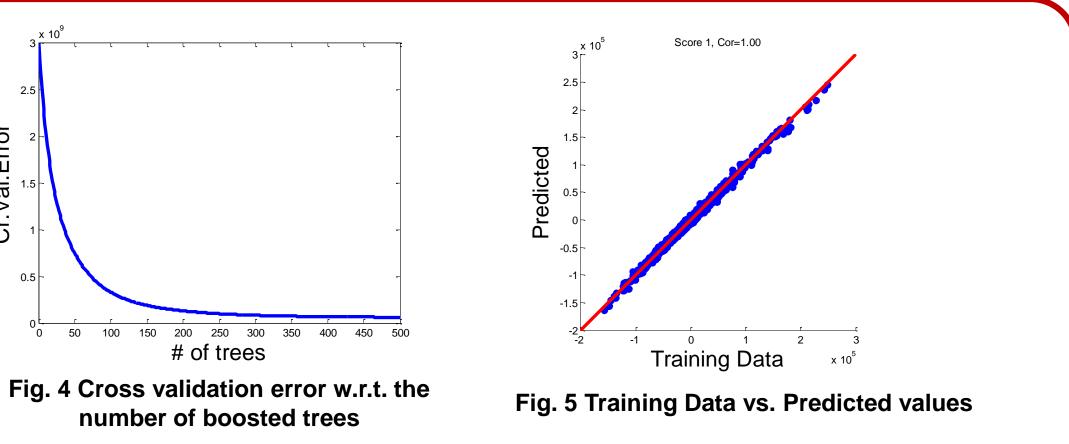

8 10 12 14 16 # of comp.

Fig. 2 First two Principle components

Fig. 3 Cumulative variance explained

Regression using boosting with regression trees

- \succ The number of trees is determined by cross validation.
- > Predictors are model parameters and responses are principle components.
- Cr.Val.Erro (day) OIL(stb/(4000 OWC oilvis sor SWC watexp oilexp mflt2 mflt4 mflt3 mflt1

Uncertainty quantification with regression models

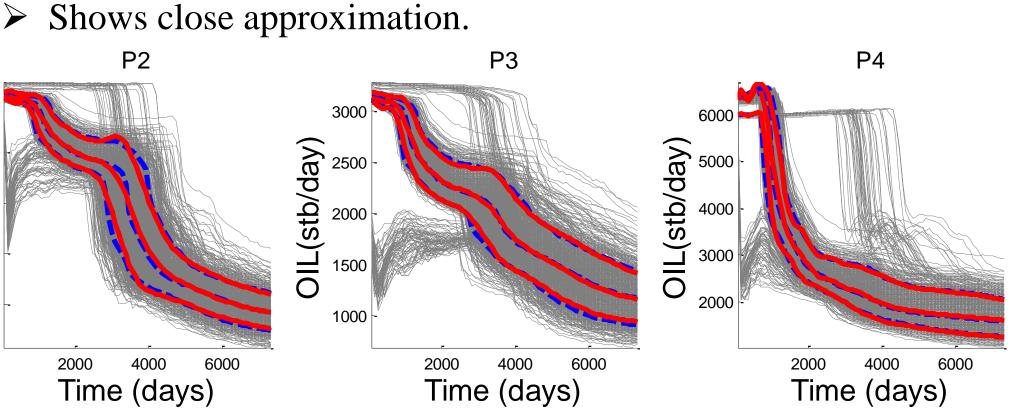
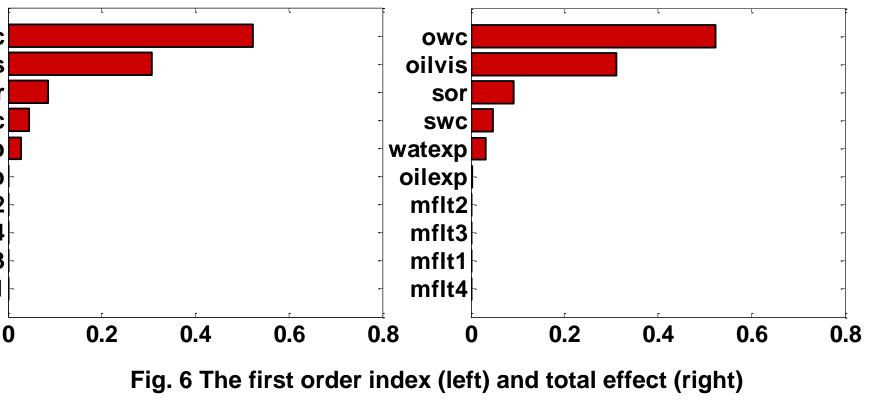



Fig. 5 Forecast of oil rate at each well (gray: every model, blue: observed curves, red: curves from regression models, each three line represents P10,P50, P90)

Global sensitivity analysis

 \succ 600,000 (n=50,000, k=10) forward runs can be performed rapidly with regression models.

References

Ahlbrandt, T. S., 2001. The Sirte Basin Province of Libya: Sirte-Zelten Total Petroleum System

Saltelli et al., 2008, "Global sensitivity analysis: the primer". Ramsay J.O. and Silverman B.W., 2012, "Functional Data Analysis".