Abstract

Millions of people depend on public transit to get to their destinations on time every day. This project leverages the real-time data available from the transit system in São Paulo, Brazil (API managed by SPTrans), and applies machine learning techniques to learn patterns and provide accurate predictions of bus arrival times in that city. The results obtained so far are very encouraging and demonstrate compelling prediction accuracy, especially considering the limitations of the API.

Overview

The figure below shows a typical morning of the "875C-10" service. Each line shows a vehicle as it performs the ~19 km trip. Notice the sheer number of transit vehicles and note the traffic jam at around 8:00am.

This chart was generated in Excel with data output from the present system. Transit vehicles perform the same routes multiple times each day and one vehicle is often just a few minutes behind another on the same transit line. Therefore, information from the vehicle ahead is indicative of conditions that will be encountered ahead. Also, traffic patterns have periodicity, so data from previous days/weeks are also useful.

Real-time learning and prediction of public transit bus arrival times

CS 229 Machine Learning – Autumn 2016

David Nissimoff (davidni@stanford.com) | Department of Electrical Engineering | Stanford University

Route segmentation

SPTrans provides a GTFS feed (General Transit Feed Specification) that gives the routes of all lines. We then project the real-time geo-coordinates from vehicles onto the known GTFS routes, obtaining a single number (meters along the route). The route is then split onto equal-length segments and a sample is registered each time a vehicle passes through a segment. Each sample includes the timestamp when the vehicle crossed the center of the segment and the travel time duration. Vehicle positions are linearly interpolated between "sightings" (a "sighting" refers to a new vehicle position returned from the API).

Data collection pipeline

RESTful web service

OLHOVIVO

Live Data Collector

GTFS feed

SQLite

Data Pre-Processor

Real-time prediction model

Offline model calibration (GNU Octave)

Route segmentation

(10 meter segments)

Keep track of vehicle "sightings"

Lookup historical data on each segment

Calculate 144 features based on historical data

Export data for offline feature selection & calibration

Adjust model parameters

Predictions between midnight - 5:00am

Predicting how many vehicles into the future

Periodic locally-weighted averaging

For each route segment individually, we have samples $x^{(i)} \in \mathbb{R}$ and $y^{(i)} \in \mathbb{R}$ where $x^{(i)}$ is the timestamp when the i-th measurement for that segment was made (number of seconds from a reference date, for example) and $y^{(i)}$ is the measured time to traverse the segment. We first map $x^{(i)}$ onto a 3-D helix defining $y^{(i)} = \sin\left(\frac{2\pi x^{(i)}}{T}\right) \cos\left(\frac{2\pi x^{(i)}}{T}\right)$, $\tau \in \mathbb{R}^3$ where T is the model periodicity, and p is the helix pitch. To obtain an estimate at a query time t, we map t to $q \in \mathbb{R}^3$ with the helix transform and take the average of $y^{(j)}/w_j$ using weights $w_1 \equiv 1$.

Of course, the weights must be normalized. By varying T, τ and p we obtain different estimates for a segment. Call these $\hat{y}_{T,\tau,p}$ for each value of the parameters. For each query time t, we compute $\hat{y}_{T,\tau,p}$ with 9 values of T, 8 values of τ and 2 values of p, totaling 144 values. We do all of this as each segment is crossed by a vehicle, and we generate data for a second learning algorithm. Now we have features $c^{(i)} \in \mathbb{R}^{144}$ mapping to $y^{(i)}$ and linear regression was found to perform adequately. The best 3 features (measured by best test error with a train:test ratio of 70:30) were selected by brute-force, so only the 3 corresponding values of $\hat{y}_{T,\tau,p}$ are needed for predictions.

Results and future work

More than 13 million vehicle locations have been collected so far (in just over 7 weeks). The chart to the right helps visualize the accuracy of predictions for the "875C-10" line with the proposed method. The horizontal axis represents the time horizon of the prediction, whereas the vertical axis shows the prediction error. Predictions were made between all "sightings" of each vehicle. As the figure below illustrates, accuracy is better outside of peak hours, since traffic is a lot more predictable at those times (no traffic jams).

The main goals for the project have been achieved and it was demonstrated that it is indeed possible to predict bus arrival times based on past data. Being able to predict where a bus will be up to one hour into the future is very powerful and opens up many interesting scenarios. Ideas for future work include migrating the implementation to a distributed cloud environment and building a user interface on top of this project to show useful and actionable data to a transit rider, as well as further improving the prediction models.

1. due to its poor extrapolation ability, locally-weighted linear regression performed worse

2. see the box “Periodically locally-weighted averaging”