

Adversarial Machine Learning against keystroke dynamics

Project Objective

- To generate adversarial keystroke samples that make an otherwise robust classifier accept the artificially generated samples as belonging to the valid user
- Compare different classifiers vs adversarial samples and explore ways to improve defence

Data

• CMU data set

- All users type a unique password (.tie5Roanl)
- 51 users, 400 instances over 8 sessions
- 31 timing feature recorded; key-hold time and consecutive keyup-keydown, keyup-keyup time
- Agnostic to modifier key preference

• Suitaibility

• Construction of adversarial attacks is easier since all users type the same password

• Preprocessing

- Use S.D to normalize features and scores
- **Filter:** Exclude outliers (> 2 SD from mean) from user's samples.

Methodology

• *Threshold Score:* Equal Error Rate (EER) from Receiver Operating Characteristic (ROC) curve

• Classifiers

Data for baseline score: 200 genuine, 200 imposters.

- Manhattan Distance _o OneClassSVM
- Autoencoder Variational Autoencoder

• Attackers

Data: Samples from all other users (2000 samples)

- Average: Use average value for each feature. Generates 1 attack vector per user.
- K-means with 8,16,32 & 64 clusters on all the features. Each cluster serves as an artificially generated attack vector

Classifier Robustness

Unseen Test Data: 200 genuine users; 500 impostor users

Figure : Average Error Rate per user group								
Users	Manhattan	S	W V	Auto	encoder	Var Al	Ε	
Great	at 0.070		.090	(0.091	0.065		
OK	0.084	0.	.096	(0.096	0.100)	
Bad	0.134	0.	136	().149	0.139)	
Figure: EER per user group								
	Users G	reat	OK	Bad	All			

EER

Attacker Performance

- 70% of users

Parimarjan Negi, Ankita Sharma

Stanford University

Based on the EER scores, users divided into Great (< 0.03), Ok (< 0.10), and Bad (> 0.10)

0.019 0.061 0.179 0.113

Total fails for classifier and attacker combination

Enhancements

Following techniques were used to improve defenses: Skipping initial features: Improves resistance as skips the samples where user is getting used to password

- Filtering: Remove outlier samples from training data (Figure shows total broken users with Manhattan classifier against attackers)
- Using median/mean as threshold instead of EER: This technique can be used in practical scenario when the login attempt is from an unknown machine.

clusters	Great	OK
32	8	15
64	8	14

Conclusion

- Most users' defense can be broken easily with just 8 cluster k-mean scheme
- Manhattan distance is simplest and most robust classifier probably due to certain degree of overfitting for others
- Score normalization, filtering improved average error rate

Future Work

- Get features like modifier key usage from other datasets
- Is it possible that the majority of the users just never got used to typing in this particular password? To make more general conclusions, it should be very useful to run these tests on some other datasets - especially - those that might have more 'natural' passwords, like user's name.
- Evaluate classifier and adversarial attack performances change as we feed it different amounts of data.

30