Genome Dreaming
Akshay Maheshwari, Bohan Wu, Öğuz H. Elibol

Introduction and Motivation

- The ability to generate novel genomes and sequences with predictable characteristics would revolutionize synthetic biology
- We build an end-to-end pipeline to:
 1. Learn the properties of unlabeled prokaryotic genomes in an unbiased way
 2. Generate new sequences with predictable properties
 3. Visualize and evaluate learned representations of generated sequences

Data

- 4131 unlabeled prokaryotic genomes and their gene annotations from the KEGG database

Acknowledgements

We would like to thank Dr. Drew Endy, Dr. Anshul Kundaje, Dr. James Zou, Namrata Anand, Bo Wang, Jesse Zhang, Volodymyr Kuleshov, and all members of the Endy lab

Model & Visualization

Pipeline:

- Learn structure using Recurrent Neural Networks (LSTM)
- Optimize model
- Generate sequence
- Extract hidden layers for all E. coli genes
- Reduce hidden layers into 2D using t-SNE
- Cluster using Mixture of Gaussians
- Extract proportion of points in each cluster
- Create vector embedding for each gene (100-D)
- Reduce gene embeddings to 2D
- Evaluate similarities between genes and generated sequence

Learning and Sequence Generation

\[L_C(w; y) = - \sum y_i \log p(y_i) \]

LSTM Cells

Sequence Visualization and Evaluation

- Extract hidden layers for all E. coli genes
- Reduce hidden layers into 2D using t-SNE
- Cluster using Mixture of Gaussians
- Extract proportion of points in each cluster
- Create vector embedding for each gene (100-D)
- Reduce gene embeddings to 2D
- Evaluate similarities between genes and generated sequence

Results

Model tuning and optimization

Model Validation

<table>
<thead>
<tr>
<th>Gene</th>
<th>Probability</th>
<th>Distance (MPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.coli-strain 1</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>E.coli-strain 2</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sequence Generation and Property Prediction

Generated Protein | grol (Closest Neighbor)

- Build a stronger model: Generative Adversarial Networks, WaveNet, Neural Turing Machines, and Attention Models
- Identify the properties and motifs that the neural network is learning