
The Applicability of Machine Learning Concepts to Game Artificial Intelligence
Garrett Gutierrez (garrettg@stanford.edu) and Qiujiang Jin (qiujiang@stanford.edu)

Stanford University, CS229, 13 December 2016

Summary

The motivation of our project was to assess the applicability of Machine
Learning concepts to General Game Playing. The applicability of lin-
ear regression and reinforcement learning were analyzed. An analysis of
linear regression revealed the potential for a greedy game playing algo-
rithm that performs better than Monte-Carlo Tree Search (our baseline
for measuring performance) under certain conditions.

General Game Playing (GGP)

Rules of General Game Playing regarding artificial players:
General Game Players know nothing about the rules of the game or
the amount of time they will be given before the game begins.
Passed rules of the game at the beginning of the game.
Player has an amount of time, referred to as the start clock, at the
beginning of the game before any turns have been taken to do any
calculations.
Player has an amount of time, referred to as the turn clock, during
each turn to decide what action to take. Must decide an action before
the end of the turn clock.
All players take simultaneous turns.

Data

There is no precompiled game state data because, by the rules
of GGP, the player is permitted no knowledge of the game
before the game begins. Games used are those defined at
http://gamemaster.stanford.edu.

Figure 1: Knight’s Tour, a single player game that MCTS performs reasonably well on
that the linear regression model performed poorly on.

Features

Feature vectors for states are n length vectors where n is the number
of propositions in the game. For example, if proposition j in checkers
is "the red player has captured 4 total black pieces", then x(i)

j = 1 if the
red player has captured 4 total black pieces in state i. Otherwise it is
x

(i)
j = 0.

First Model: Post-game Linear Regression

To begin, we attempted to get an upper bound on the efficacy of linear
regression by running a standard Monte-Carlo Tree Search player with
Propositional Nets on various games. Then, at the end of the game,
we trained a linear regression model on the state data compiled during
the game, with the game states being the x input vectors and the
utility derived by Monte-Carlo Tree Search being the y target values.
The results are shown in Table 1. Accuracy measures how often the
Monte-Carlo Tree Search algorithm and the derived hypothesis function
agreed on the best action to take given a state.

Game Degree Depth Accuracy
3-puzzle 2 6 0.61
Buttons and Lights 3 6 0.21
Hunter 2-4 14 0.08
Knight’s Tour 2-6 27 0.03
Connect Four 8 14 0.23
Checkers 9-10 49 0.71
Alquerque 10 29 0.72

Table 1: Results for each game tested. Both degree and depth describe the game tree
(where each node is a state) and are approximations.

Interpretation of Results

Linear regression appeared to be most effective in cases where specific
state propositions are associated strongly with a specific level of utility.
The goal in both Checkers and Alquerque is determined by how many of
the enemy pieces have been captured. The average breadth and depth
of the game tree did not appear to have as much of a bearing on the
efficacy of the algorithm.

Second Model: Pre-game Linear Regression

Since linear regression seemed to be accurate on games with advanta-
geous game propositions, we realized that we could use linear regression
to create a greedy player that prefers states that have as true propo-
sitions that are recognized to be advantageous. Such a player could
be effective in situations where the start clock gave the player enough
time to compile sufficient training data but the play clock was mini-
mal enough that a regular MCTS player would essentially be forced to
return a random action. Algorithm 1 shows the adjusted back prop-
agation function used by the linear regression player during the start
clock. During the play clock, it merely judges the best action based on
which resulting state maximizes hθ(s).

Data: Terminal state s and associated utility u derived by single depth
charge of MCTS. θ derived from previous backward
propagations and step size α.

Result: Updated Monte-Caro game tree and θ.
while s 6= null do
s.utility ← s.utility + u;
if s.recorded == false then
for j ← 0 to n do
θj ← θj + α(u2 − hθ(s.features))s.featuresj;
end
s.recorded← true;
end
s← s.parent;
end
Algorithm 1: Altered backwards propagation algorithm incorporating
linear regression.

Results

The player that conducts pre-game linear regression, in its current state,
does not appear to perform any better than a random player during
games such as Checkers and Alquerque. There is a significant degree
of difficulty involved in choosing an appropriate step size. In addition,
training θ on the initial judgement of the utility of a state means we are
training it on the weakest possible meaningful assessment of a state’s
utility. An alternative algorithm would be to collect the data first during
the first portion of the start clock (by exploring the game tree using
MCTS) and then during the second portion training on the collected
data. It is difficult to judge, however, how to divide the time and how,
specifically, to judge how much time will be necessary for convergence.

Future

Future potential research could involve determining a relationship be-
tween the size of the game tree and the feature vector (I.E. number of
propositions per state) and assessing from there how much data and
time is necessary for convergence. Alternatively, a greedy algorithm
that involves directly examining the propositional network to deter-
mine propositions associated with specific goal values may have supe-
rior performance in certain circumstances in addition to being easier to
implement.

References

[1] C. Browne et al, "A Survey of Monte Carlo Tree Search Methods"
in IEEE Transaction on Computational Intelligence and AI in
Games, vol. 4, no. 1, March 2012.

[2]M. Genesereth et al, "General Game Playing: Overview of the AAAI
Competition" in AI Magazine, vol. 26, no. 2, Summer 2005.


