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PROBLEM
In many developing countries, government programs targeting
the poor face the problem of identifying who they really are be-
cause income is usually unobserved for the very poor. A com-
mon approach is obtaining a list of poor households from the lo-
cal administrative office, but the officers might have incentives
to misreport the poorest households to some extent to benefit
their own relatives and friends. If the government wishes to al-
locate funds to H poor households in the society, who should
receive the funds?
We propose two machine learning algorithms to deal with the
issue. Our better performing algorithm makes a significant im-
provements in identifying poor households in the population.

DATA
US household data extracted from the 2015 American Commu-
nity Survey. We draw a sample of 50, 000 households from the
data that are representative of the US population.
We treat 51 US states as different "villages". We construct the
variable z(i,k) that indicates whether household i in village k
lives below the income poverty threshold ȳ. The U.S. Census
Bureau sets the household income poverty threshold in 2016 at
24, 036, so we choose ȳ = 24, 036.
We simulate the dataset 200 times and assess the performance
of our algorithms over the simulated datasets.

RESULTS

Figure 1: Estimated versus true misreporting rates

Table 1: Mean square errors and correlation coefficients between esti-
mated and true misreporting rates

Figure 2: Fraction of poor households among selected 3000 households
(200 simulations)

Figure 3: Fraction of poor households among those predicted to be
poor (200 simulations)

REFERENCES

[1] R. J. Little and D. B. Rubin, Statistical Analysis with Missing Data.
Wiley-Interscience, 2nd ed., 2002.

[2] L. N. R. D. Dempster, A.P., “Maximum likelihood from incomplete
data via the em algorithm,” Journal of the Royal Statistical Society,
Series B, vol. 39, no. 1, pp. 1–38, 1977.

FUTURE RESEARCH
The allocation may be improved even further by using a generative EM with different distributional assumptions over the features.
The method used in this paper has a potential to improve classification in a wide variety of situations in which labels are imperfectly
observed.

DISCUSSION
• The naive method that ignores corruption allocates 58%

of funds on average to poor households (Figure 2). The
discriminative EM improves the allocation to about 95%.
Thus, additional 37%× 3000 = 1110 households who des-
perately need aid receive it if the discriminative EM is
used to allocate aid.

• The generative EM does very poorly, substantially wors-
ening the allocation of the naive method because the main
underlying assumption that the features are normally dis-
tributed is no longer true for our data.

FEATURES
Household characteristics are: number of household members,
the head’s age and education, dwelling characteristics such as
stove, fridge, television, etc., mortgage payment, food stamp
eligibility and spending on gas, water and fuel.
We construct z(i,k) in the following way:

• First let z(i,k) equal to 1 if household’s i in village k income
is below the poverty line, and 0 otherwise.

• Then endow each village k with the probability of mis-
reporting τk = βk

2 , where βk is randomly drawn from
Beta(2,4).

• Finally, for each village k we randomly switch the values
of z(i,k) at rate τk independently across households.

METHOD
Although we do not observe whether a household is poor,
s(i) ≡ 1(y(i) ≤ ȳ), we do observe imperfect signal of the variable
of interest, z(i), which distinguishes our setup from standard
unsupervised learning problems.
We apply two types of EM algorithms: discriminative EM and
generative EM.

MODELS

Discriminative EM
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The EM algorithm consists of initializing vector of parameters
(θ, τ) and repeatedly carrying out the following two steps until
convergence:

• (E-step) For each k = 1, ...,K and i = 1, ...,Mk, set

Qi,k(s) = p(s|z(i,k), x(i,k); θ, τ)

• (M-step) Set
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Generative EM

Because some of our features are continuous and some discrete,
we find it more appropriate to make Gaussian distributional as-
sumptions on its principal components. We use the first four
principal components because they capture almost all of the
variation in the data and ease numerical computation. We re-
fer to the transformed feature vector for individual i as x(i). We
assume that xi|s ∼ N (µs,Σs), and that y ∼ Bernoulli(ρ). The
log likelihood is
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The EM algorithm consists of initializing vector of parameters
(µ,Σ, ρ, τ) and repeatedly carrying out the following two steps
until convergence:

• (E-step) For each k = 1, ...,K and i = 1, ...,Mk, set

Qi,k(s) = p(s|z(i,k), x(i,k);µ,Σ, ρ, τ)

• (M-step) Set
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Having obtained estimates β for each method, we compute p̂(i,k) ≡ p(s(i,k) = 1|z(i,k), x(i,k);β) where β = (θ, τ) for the discriminative
EM and β = (µ,Σ, ρ, τ) for the generative EM. We then for both methods find the households with the highest H = 3000 order
statistics of the set {p̂(i,k) : 1 ≤ i ≤Mk, 1 ≤ k ≤ K}, as well as identify households who are classified as poor (i.e. p̂(i,k) > 0.5).


