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Conclusion

• Add a partitioning algorithm to our model—train a neural 

network to partition the dataset into k groups of similar 

materials and then use the subsets to train regression

• Train a convoluted neural network or a deep learning 

network on a much larger database (Materials Project or 

OQMD) to more accurately predict material band gaps

Neural Network

• Band gap is positively correlated to ΔEN and %p and 

negatively correlated to RCV  and ∆Pe𝑝−𝑑, which are 

indicative of ionicity and hybridization of the bonds in the 

compounds

• Linear regression has high bias; Random Forest, Ada 

boosting, and MLP perform better but tend to over-fit data

• Lowest test MSE achieved with Ada Boosting, suggesting 

that the error due to bias is reduced more than the error 

due to variance

Random Forest and Ada Boosting

[1] Richard King et al., MRS Bulletin, March 2016.     [2] E.F. Shubert, Light Emitting Diodes (Camb. Univ. Press), 2006.

• Random Forest: Fits classifying decision trees on subsets of 

the data, uses averaging to improve accuracy and prevent 

over-fitting

• Ada Boosting: Fits series of weak learners on repeatedly 

modified versions of the data, with higher weight placed on 

incorrectly predicted examples

• In OLS, Ridge, and Lasso, the fitting 

parameter θ is calculated by :

• Ridge and Lasso: no improvement over 

OLS since optimal α is close to 0

• Development of tandem and perovskite solar 

cells and battery electrodes is largely constrained 

by new material discovery and design

• Prediction of material properties using 

computational methods like density functional 

theory (DFT) and molecular dynamics (MD) is 

computationally expensive

Goal: Predict band gaps of materials from element 

composition using machine learning techniques

Method

Training Data 

(1860 samples)

Test Data 

(207 samples)

MSE Score (r2) MSE Score (r2) CV MSE

OLS 1.30 0.62 1.17 0.57 1.38

Random Forest 0.16 0.95 0.86 0.68 1.18

Ada Boosting 0.01 1.00 0.81 0.70 1.18

MLP 0.38 0.89 1.22 0.63 1.28

• Multi-layer Perceptron (MLP):

Update parameter using SGD:

𝑤 ← 𝑤 − 𝜂 𝛼
𝛿𝑅

𝛿𝑤
+
𝛿𝐿𝑜𝑠𝑠

𝛿𝑤

• Capable of learning non-linear 

models

• Optimal parameters:
Hidden layers = 500, activation 

function = ‘relu’, initial learning rate = 

0.0027599, regularization = 0.00033

• The dataset contains 2067 samples with DFT-calculated band 

gap values ranging from 24 meV to 11.5 eV

• 75 features include stoichiometric, elemental, and electronic 

structural and ionic attributes

• Preprocessing: Small variance features removed and 

standardization applied to get a distribution of mean zero and unit 

variance

• Designed complex features such as:

%𝑝 =
Avg p electrons in valence shell

Avg electrons in valence shell
, ∆Pe𝑝−𝑑 = max {0, (%𝑝 ∗ 𝑁𝑝 −%𝑑 ∗ 𝑁𝑑)2},

where 𝑁𝑝 (𝑁𝑑) = maximum number of valence 𝑝 (𝑑) electrons

δ+
δ-

Electronegativity Covalent radius

Perovskite structure

Tandem solar cell

• Forward selection method:

Important features include %𝑝,

∆𝑃𝑒𝑝−𝑑, electronegativity difference 

(ΔEN), covalent radius (RCV), number 

of f electrons, and periodic table row 

and column numbers

Ridge:
𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛| 𝑋𝜃 − 𝑦 |2

2 + 𝛼| 𝜃 |2
2

Lasso:
𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛 1

2𝑛| 𝑋𝜃 − 𝑦 |2
2 + 𝛼| 𝜃 |1

X1 X2 X3 X4
...X5 Xn

a1 a2 a3 a4 ak
...

J(X)

Input 

layer

hidden 

layers

output
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OLS:
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