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Data and Features

e The dataset contains 2067 samples with DFT-calculated band
gap values ranging from 24 meV to 11.5 eV

Conclusion

Random Forest and Ada Boosting

e Band gap is positively correlated to AEN and %p and
negatively correlated to R, and APe,_,, which are

indicative of ionicity and hybridization of the bonds in the

e Random Forest: Fits classifying decision trees on subsets of

e /5 features include stoichiometric, elemental, and electronic the data, uses averaging to improve accuracy and prevent
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: | | _ compounds
O+ e Ada Boosting: Fits series of weak learners on repeatedly _ on has high bias: Randorm E ¢ Ad
- . . . . . o )
0 modified versions of the data, with higher weight placed on _|neat_r regrezsl'\jl)ﬂp as flg blatst’ S”t tomd tores ’ f'tad t
‘ . incorrectly predicted examples poosting, an perform better but tend to over-fit data
\_~ S - S  Lowest test MSE achieved with Ada Boosting, suggesting
Q 8 o Random Forest . Q 8| « Ada Boosting . . .
o Lo o . that the error due to bias is reduced more than the error
Unit cell Electronegativity Covalent radius S 6 . 5 6 R due to variance
Source: Materials Project 'g . " e -: 'g ',::‘ H
. . IS W/ 54 . ISRl
e Preprocessing:. Small variance features removed and - B T R - T N
zat i stributi | SRy ke B2 cagden Future Work
standardization applied to get a distribution of mean zero and unit Y - 27 Sy e
variance So e T So &% 7
Q Q . . . .
g S o — e Add a partitioning algorithm to our model—train a neural

e Designed complex features such as:
%p _ Avg p electrons in valence shell Apep—d — max {O, (%p « Np

Actual Band Gap (eV) Actual Band Gap (eV)

network to partition the dataset into k groups of similar
materials and then use the subsets to train regression
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