Detecting Temporal Relations of Events in Short Narratives
Delenn Chin, Kevin Chen
{delenn, kchen8} @stanford.edu

Introduction
The translation of ideas expressed in natural language to a computationally usable form remains a fundamental goal in NLP. Using an annotated corpus of short 5-sentence narratives, we developed a classifier for determining whether one event happens before, during, or after another event. With limited data, our classifier is able to achieve 62% accuracy in relation prediction.

Data
We use the annotated StoryCloze corpus, published by the Mostafazadeh group at Rochester, which consists of 300 5-sentence short stories, for a total of ~3,700 labelled event pairs. We focus our study to the classification using the provided temporal labels, {'BEFORE', 'OVERLAPS', 'DURING'}.

Feature Selection
We experimented with features common to NLP tasks, as well as specific to temporal intuition.

• Events (word, lemma, synsets)
• Tense
• Ordering in document
• Number of tokens between events
• Part of Speech (uni, bi, tri–grams around events
• L1 regularization

Model Selection
We framed the problem as a 3-way classification problem, where each pair of events is assigned a label from {'BEFORE', 'OVERLAPS', 'DURING'}.

Naïve Bayes
We first tried to use Naïve Bayes for multi-class classification, with the objective likelihood function

\[\mathcal{L}(\phi_j, \phi_j|y=0, \phi_j|y=1, \phi_j|y=2) = \prod_{i=1}^{m} \max_y \phi(y|x^{(i)}) p(y). \]

Event pairs were given the maximum likelihood class, and evaluated via accuracy. With unigram and bigram approaches, we achieved only accuracies of 50% and 53%.

Logistic Regression
We soon realized that temporal relations are often dependent on general sentence structure as opposed to the presence of tokens (with certain exceptions, ex. “after”, “before”, etc.), prompting a switch to multi-class logistic regression. Using the sklearn Python library, we maximize the Softmax regression function over all examples in the training set:

\[p(y = j|x^{(i)}; \theta) = \frac{e^{\theta_j^T x^{(i)}}}{\sum_{k=1}^{K} e^{\theta_k^T x^{(i)}}}. \]

Discussion
Limited dataset and bias towards “BEFORE” relation makes classification challenging

• Inherent bias in story telling, text sources toward temporal linearity
• Overfitting to features specific to train set
• Token specific features most heavily weighted in other classes
• Token count between events improved accuracy most ~ 8%
• Token specific features sparse, as temporal relation less related to the actual words used

Future Directions
• Use VerbNet corpus to incorporate semantic features of events
• Increase data set size / number labelled stories, try to reduce bias

Results

<table>
<thead>
<tr>
<th></th>
<th>Training F1-metric</th>
<th>Testing F1-metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Bayes, w/ unigrams</td>
<td>0.94</td>
<td>0.50</td>
</tr>
<tr>
<td>Log-Reg, baseline</td>
<td>0.99</td>
<td>0.48</td>
</tr>
<tr>
<td>Log-Reg, w/ features</td>
<td>0.85</td>
<td>0.62</td>
</tr>
<tr>
<td>Num Samples</td>
<td>2058</td>
<td>354</td>
</tr>
</tbody>
</table>

References