Speech Recording based Language Recognition

Leopold Cambier, Cindy Orozco Bohorquez, Matan Leibovich
lcambier@stanford.edu, orozcocc@stanford.edu, matanie@stanford.edu
Institute of Computational and Mathematical Engineering

Overview

- **Motivation**: Construct a real-time language classifier for communication purposes.
- **Method**: Construct ML estimator based on Gaussian Mixture Model (GMM) density estimations.
- **Results**: Classification error decreases with model complexity to a certain limit. Optimal number of gaussians varies significantly across languages. There is clustering pattern in the classification.

Data

Source: https://community.topcoder.com/longcontest/?module=ViewProblemStatement&rd=16555&pm=13978

- \(\mathcal{L} \): 176 different languages (some very exotic!)
- 376 10 sec. samples for each language
- Each sample divided into 210 ms long segments

Feature Extraction: Shifted Delta Cepstral (SDC)

- Hamming Window: \(x_{\text{Ham}}(t) = x(t) \text{ Ham}(t) \)
- Fourier Transform: \(\tilde{x}(f) = \mathcal{F}(x_{\text{Ham}}(t)) \)
- Transition to Mel Scale: \(\tilde{x}_{\text{Mel}}(f) = \tilde{x}(M(f)) \)

- 7-vectors cepstral coefficient for each 10 ms segment
- Use 3 adjacent cepstral coefficients to construct a 7-vector SDC coefficient
- For each 210ms sample ⇒ 49 SDC coefficients
- \(46 \times 376 = 17206 \) data samples \(x_{\text{i}}^{(i)} \)

Gaussian Mixture Model

Density Estimation

- Use \(x_{\text{i}}^{(i)} \) to estimate mixture of \(N \) Gaussian densities
 \[
 p_{\ell}(x) = \sum_{i=1}^{N} w_i \mathcal{N}(x; \mu_{\ell,i}, \Sigma_{\ell,i}), \quad x \in \mathbb{R}^4
 \]
 \[
 P(x; \mu_{\ell,i}, \Sigma_{\ell,i}) = \frac{1}{\sqrt{(2\pi)^{4} | \Sigma_{\ell,i} |}} e^{-\frac{1}{2} (x-\mu_{\ell,i})^T \Sigma_{\ell,i}^{-1} (x-\mu_{\ell,i})}
 \]
 \(\mu_{\ell,i}, \Sigma_{\ell,i} \in \mathbb{R}^{4 \times 4} \)

- \(\Sigma_{\ell,i} \): either full or diag

- Training using Python’s sklearn toolkit.

Classification

- Given 10s sample, construct \(x_{\text{i}}^{(i)}, \quad i = 1, \ldots, 46 \)
- SDC vectors for each 210 ms segment.
- MLE estimator

\[
 \hat{\ell} = \arg \max_{\ell} \prod_{i=1}^{46} p_{\ell}(x_{\text{i}}^{(i)})
 \]

Results

- Model trained with full and diagonal covariances
- Optimal for full covariance at \(N = 10 \)

- Optimal \(N \) actually varies significantly from one language to another

Future Work

- Allow variability in \(N \) per language for model fitting
- Introduce a measure for the quality of the GMM fit
- Train the algorithm on a larger dataset
- Predict how well would the classifier fit the sample (confidence intervals)

Bibliography

Discussion

- Test error of 0.34 with \(N = 10 \) and full covariances, on a dataset with 176 (balanced) classes
- Increasing \(N \) (to some extent) decreases the validation error, which shows some consistency between the model and the data
- Relatively high variability in the accuracy depending on the language

Construction of Cepstral Coefficients

- DCT of logarithm: \(x_{\text{Cep}}(\ell) = \text{DCT}(\log \tilde{x}_{\text{Mel}}(f_{\ell})) \)
- SDC: \(\tilde{x}_{\text{SDC}}(\ell) = \tilde{x}_{\text{Cep}}(\ell) - \tilde{x}_{\text{M}}(\ell) \)

Confusion Matrix Graph with Highlighted Communities

Distribution of Optimal \(N \) over Languages

Error is non uniformly distributed but tends to cluster
Analysis of confusion matrix graph shows communities