Motivation
Prediction of traffic is an area where the application of machine learning could help to pinpoint where additional infrastructure may be the most beneficial. The aim is to build a model of traffic on freeways in the Bay Area based on the time of the day, day of the week, and the weather.

Data
The PEMS data from one of the sensors in I-280 are used to predict future traffic. Output metrics is the aggregate occupancy rate of lanes. Occupancy rate is a number between 0 and 1 describing how often the lane is occupied at specific time points throughout the day.

Weather data was extracted for each day of the year, including precipitation and temperature.

<table>
<thead>
<tr>
<th>Feature1</th>
<th>Feature2</th>
<th>Feature3</th>
<th>Feature4</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day of week</td>
<td>Hour</td>
<td>Avg. Temp</td>
<td>Precip</td>
<td>Avg. Occ</td>
</tr>
</tbody>
</table>

Models

Linear Regression (LR)
- Treat all features as continuous (LR1)
The algorithm fits θ such that $h(\theta) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 = y$ where x_1, x_2, x_3 correspond to features 1, 2, and 3 and y refers to the occupancy rate.

- Treat "Hour" and "Day" as categorical features (LR2)
We effectively introduce more "features" to which we will fit coefficients - i.e., hours 0-23 are each a feature, and weekdays 1-7 are also features.

- Treat correlation between "Hour" and "Day" as a feature (LR3)
A set of categorical features of Day*Hour is introduced to model the interaction between day of the week and the hour of the day.

Functional Regression (FR)
- Treat previous day as Features
Five training time series closest to the testing data are chosen while outliers are removed. We weight the training data and made a prediction accordingly.

Results

We implemented 4 different models where it is clearly shown that LR3 (Fig 3) and FR (Fig 4) model the occupancy rate more accurately.

<table>
<thead>
<tr>
<th></th>
<th>LR1</th>
<th>LR2</th>
<th>LR3</th>
<th>FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Error</td>
<td>2.2650</td>
<td>1.3194</td>
<td>1.0356</td>
<td>X</td>
</tr>
<tr>
<td>Testing Error</td>
<td>2.2770</td>
<td>1.3271</td>
<td>1.0667</td>
<td>0.7709</td>
</tr>
</tbody>
</table>

Conclusion
- "Hour", "Day", and "Hour*Day" are the most relevant features for LR.
- Eliminating outliers in training data greatly improves FR performance.

Future Work
- Build a complete model of the the whole freeway to map out geographically related trends.