Predicting Compensation for Job Seekers
CS 229 Final Project (Autumn 2016)
December 13, 2016
Darren Baker
Megan Fazio
Jen Kilpatrick
{drbaker, mefazio, jdki}@stanford.edu

Problem Background

- **Big question on the mind of most job seekers:** “how much can I expect to be paid?”
- This question is surprisingly hard to answer!
 - Employers rarely share data about their compensation levels
 - Wages/salaries can vary widely across geographies, industries, employee experience levels, and more
- **Our goal:** based on some combination of input values describing a possible job, can we produce a reliable prediction of base salary for that job?

Data Overview

- We obtained a dataset with over 2 million user-reported salary datapoints from leading careers site Glassdoor
- Data is all from the United States over the years 2014 - 2016, across many industries, jobs, and employers
- Examples of key features:
 - Job title (e.g. “sales manager”)
 - Employee attributes (experience, etc.)
 - Employer name and attributes (total employee count, industry, etc.)
 - Employer type (private, govt, etc.)
 - Metro area
 - Proprietary Glassdoor categories

Modeling & Prediction Approaches

Data cleansing & feature engineering

Several of the most critical features in the Glassdoor data were categorical, with huge numbers of possible values; others were noisy due to UGC or data limitations. We took steps to address sparsity and noise by:

- **Normalizing text & filtering** out invalid salary values
- **Extracting** prefix (“senior”), suffix (“trainee”), and other role descriptors (“manager”, “engineer”) from job titles
- **Consolidating** small metro areas into single values
- **Bucketing** employee counts into discrete groupings

Basic linear regression

We began with a standard squared-loss linear regression with 6 different models (reflecting progressively larger subsets of the original feature set).

Adding regularization & log salaries

Our data remained highly sparse and somewhat noisy, so we experimented with 3 types of regularization: LASSO (L1), Ridge (L2), and Elastic Net (linear combination of L1 and L2).

\[\hat{\beta} = \arg\min_{\beta} \|y - X\beta\|^2 + \lambda_2\|\beta\|^2 + \lambda_1\|\beta\|_1 \]

Elastic net minimization formula

Since the distribution of salaries is also right-skewed, we tried predicting the log of salary values to compensate.

Exploring alternate models

Finally, we experimented with tree-based regression models to explore whether they might improve accuracy, but ultimately these models proved computationally infeasible due to our huge number of features / values.

Results

- We achieved accuracy close to Glassdoor’s benchmark values (using proprietary categories): 15-19% median test error.
- Regularization delivered small improvements, but predicting log values gave a bigger boost.

Future Work

- **Inflation adjustment:**
 - We did not adjust salary values for inflation or wage growth over past years.
 - We expect that adjustments may improve accuracy by several percentage points.
- **Interaction terms:**
 - Our feature engineering does give up some “implicit” interaction when categorical variables are binarized.
 - We would experiment with re-adding explicit interaction terms to capture non-additive relationships.