
PARAMETER ESTIMATION WITH MOCK ALGORITHM
{ BOWEN DENG } DEPARTMENT OF STATISTICS

DATA OVERVIEW
The dataset we use is Wine Quality Data Set
from UCI Machine Learning Data Repository.
It has 4898 examples, with 11 features (10
predictors and 1 response) for each example.
The response is quality of the wine example.

Feature Min Max Mean Eg.
Fixed acidity 3.8 14.2 6.9 7
Volatile acidity 0.1 1.1 0.3 0.27
Citric acid 0.0 1.7 0.3 0.36
Residual sugar 0.6 65.8 6.4 20.7
Free sulfur 2 289 35 45
Total sulfur 9 44 138 170
Density 0.99 1.04 0.99 1.001
pH 2.7 3.8 3.1 3
Sulphates 0.2 1.1 0.5 0.45
Alcohol 8.0 14.2 10.4 8.8
Quality 3 9 3.19 6

Table 1: Summary and example for the dataset

Figure 1: Heatmap for correlation matrix of wine
quality data

ALGORITHM
We use linear model for the prediction for this
dataset.
Instead of minimizing the mean square error
loss, we use the MOCK algorithm:
Take ⇥

0 a subset of ⇥, and a kernel function
K⌧ : Rm ⇥ Rm ! R.

Algorithm 1 MOnte Carlo Kernel algorithm

for j = 1, · · · , B do
Sample ✓(j) ⇠ Unif(⇥0

)

for i = 1, · · · ,m do
zi f✓(j)(x

(i)
)

end for

w(j) K⌧ (

0

B@
y1
...
ym

1

CA ,

0

B@
z1
...
zm

1

CA)

end for
ˆ

✓ =

PB
j=1 w(j)✓(j)
PB

j=1 w(j)

For linear model, which we will be using for
the regression on wine quality, the algorithm
will have the following degenerations.

f✓(j)(x
(i)
) = ✓(j)

T
x

(i)

K⌧ (y, z) = exp (�ky � zk2/⌧)

Theorem 1. Assume � 2 [�M/2,M/2]

n
, for each

x

(i)
, y

(i)
sampled from N(�

T
x

(i)
,�

2
). And we use

a symmetric kernel function K⌧ (y, z) = K(

y�z
⌧)

satisfying Z
K(x) <1

then as M,m!1,

ˆ

� ! �

In theory, the MOCK estimator should con-
verge to the “optimal” value.

RESULTS
Set M = 2.0, ⌧ = 3918. We implement the MOCK algorithm in R.
The � we obtained by MOCK algorithm is:

Intercept fixed.acidity volatile.acidity citric.acid residual.sugar
5.89 -0.03 0.01 -0.06 0.02

free.sulfur total.sulfur density pH suphates alcohol
-0.01 -0.00 0.14 0.12 0.00 -0.02

Table 2: � obtained by MOCK algorithm with ⌧ = 3918, M = 2.0.

We compare the RMSE and runtime of MOCK with those of OLS.

Figure 2: Comparison of RMSE (left) and runtime (right) for textbfMOCK and OLS

There is a clear tradeoff between the accuracy (RMSE) and the runtime. However, 6000 is a sweet
spot where accuracy is almost converged and it’s 18% lower than that of OLS, and the runtime is
25% smaller than that of OLS.
By looking at the error for perturbed dataset, the RMSE obtained by both MOCK and OLS are
significantly lower than that of perturbed dataset. Hence, we can safely draw the conclusion that
both algorithms are capturing the signal rather than noise.
In practice, the MOCK estimator performs no worse than OLS with appropriate parameter.

