

PARAMETER ESTIMATION WITH MOCK ALGORITHM

DATA OVERVIEW

The dataset we use is Wine Quality Data Set from UCI Machine Learning Data Repository. It has 4898 examples, with 11 features (10 predictors and 1 response) for each example. The response is quality of the wine example.

Feature	Min	Max	Mean	Eg.
Fixed acidity	3.8	14.2	6.9	7
Volatile acidity	0.1	1.1	0.3	0.27
Citric acid	0.0	1.7	0.3	0.36
Residual sugar	0.6	65.8	6.4	20.7
Free sulfur	2	289	35	45
Total sulfur	9	44	138	170
Density	0.99	1.04	0.99	1.001
рН	2.7	3.8	3.1	3
Sulphates	0.2	1.1	0.5	0.45
Alcohol	8.0	14.2	10.4	8.8
Quality	3	9	3.19	6

Table 1: Summary and example for the dataset

Figure 1: Heatmap for correlation matrix of wine quality data

ALGORITHM

dataset. $K_{\tau}: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}.$

Algorithm 1 MOnte Carlo Kernel algorithm

for
$$j = 1, \dots, B$$
 do
Sample $\theta(j) \sim \text{Unif}(\Theta')$
for $i = 1, \dots, m$ do
 $z_i \leftarrow f_{\theta(j)}(x^{(i)})$
end for
 $w(j) \leftarrow K_{\tau}\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}, \begin{pmatrix} z_1 \\ \vdots \\ z_m \end{pmatrix})$
end for
 $\hat{\theta} = \frac{\sum_{j=1}^B w(j)\theta(j)}{\sum_{j=1}^B w(j)}$

For linear model, which we will be using for the regression on wine quality, the algorithm will have the following degenerations.

 $f_{\theta(j)}(x^{(i)}) = \theta(j)^T x^{(i)}$ $K_{\tau}(y, z) = \exp(-\|y - z\|^2 / \tau)$

Theorem 1. Assume $\beta \in [-M/2, M/2]^n$, for each $x^{(i)}$, $y^{(i)}$ sampled from $N(\beta^T x^{(i)}, \sigma^2)$. And we use a symmetric kernel function $K_{\tau}(y,z) = K(\frac{y-z}{\tau})$ satisfying

then as $M, m \to \infty$,

In theory, the MOCK estimator should converge to the "optimal" value.

BOWEN DENG }

DEPARTMENT OF STATISTICS

We use linear model for the prediction for this

Instead of minimizing the mean square error loss, we use the **MOCK** algorithm:

Take Θ' a subset of Θ , and a kernel function

$$\int K(x) < \infty$$

$$\hat{\beta} \to \beta$$

RESULTS

Set M = 2.0, $\tau = 3918$. We implement the **MOCK** algorithm in R. The β we obtained by **MOCK** algorithm is:

Intercept	fixed.acidity	volatile.acidity	citric.acid	residual.sugar	
5.89	-0.03	0.01	-0.06	0.02	
free.sulfur	total.sulfur	density	pН	suphates	alcohol
-0.01	-0.00	0.14	0.12	0.00	-0.02

We compare the **RMSE** and runtime of **MOCK** with those of **OLS**.

Comparison between MOCK and OLS

There is a clear tradeoff between the accuracy (RMSE) and the runtime. However, 6000 is a sweet spot where accuracy is almost converged and it's 18% lower than that of OLS, and the runtime is 25% smaller than that of **OLS**.

By looking at the error for perturbed dataset, the RMSE obtained by both MOCK and OLS are significantly lower than that of perturbed dataset. Hence, we can safely draw the conclusion that both algorithms are capturing the signal rather than noise. In practice, the **MOCK** estimator performs no worse than **OLS** with appropriate parameter.

Table 2: β obtained by **MOCK** algorithm with $\tau = 3918$, M = 2.0.

Figure 2: Comparison of RMSE (left) and runtime (right) for textbfMOCK and OLS