
Feature Cost Sensitive Random Forest
Anna Thomas
Stanford University

Summary
In recent years cost-sensitive classification and regression
have emerged as key challenges in the practical implementa-
tion of machine learning methods. Here we focus on the ran-
dom forest model [1] and explore strategies for cost-sensitive
forest training. We develop and test two algorithms for this
task, and apply them to the problems of cost-sensitive di-
abetes diagnosis, digit recognition, and spam filtering. We
demonstrate that for these three real world problems, compu-
tational cost at test time can be substantially reduced with-
out significantly compromising accuracy.

Problem Statement

Similar to the formulation in [2], our goal is to learn a classi-
fier F from a family of functions F that minimizes the sum
of the expected errors and the computational cost of the final
feature set:

min
F∈F

Exy[L(y, f (x))] + λEx[C(f, x)]

where L(y, ŷ) is a loss function and C(f, x) is the cost of
evaluating the function of f on example x.
Our formulation differs from [2] in that we do not have a
constraint on the feature costs, but rather incorporate the
cost minimization into the objective itself.
Since in practice we are given a training set, not a distribu-
tion, we will instead solve the following problem:

min
F∈F

N∑
i=1
L(y(i), f (x(i))) + λ

|FS|∑
j=1

Cj

Randomized Greedy Algorithm

Algorithm 1: Cost Sensitive RF
Input: X ∈ Rmxn, y ∈ Zm, C ∈ Rn, N ∈ Z, λ ∈ R

1 T ← ∅;
2 for each tree i=1:N do
3 Randomly sample training data to form X i and yi
4 T,C ′← GreedyTree(X i, yi, C, λ)
5 C := C ′

6 T ← T ∪ T
7 return T

Randomized Greedy Algorithm

Algorithm 2: GreedyTree
1 for each attribute i=1:M do
2 Randomly sample splits sij and compute

F (sij) = H(T)−H(T |sij)− λCi, where H(T) is the
information entropy

3 ŝ← argminsF (s)
4 Ci := 0
Create new node using feature i and split value j.
for each child node do

GreedyTree((X i)ŝ, (yi)ŝ, C, λ)
5 return T,C

Complementary Tree Training

Algorithm 3: Complementary Cost Sensitive RF
Input: X ∈ Rmxn, y ∈ Zm, C ∈ Rn, N ∈ Z, λ ∈ R

1 T ← ∅;
2 for each training example j=1:M do
3 Wj = 1

M

4 for each tree i=1:N do
5 Randomly sample training data to form X i and yi
6 T,C ′← GreedyTree(X i, yi, C, λ)
7 C := C ′

8 for each training example j=1:M do
9 εj = 1

|T |
∑
Ti∈T I(hi(xj) = yj)

10 Wj = εj

11 T ← T ∪ T
12 return T

Results

(a) Pima Indian diabetes diagnosis dataset,
with provided costs shown in Table 2.

(b) Digit recognition dataset. Costs were not
provided, so we use C(S) = |S|.

(c) Spam filtering dataset. Costs were not
provided, so we use C(S) = |S|.

Figure 1: Cost versus accuracy tradeoff for three datasets. FFS - full feature set considered at each split; RFS - randomized feature set of size √n
considered at each split; FFS + CT - full feature set and complementary training (Algorithm 3).

Datasets

Dataset Num. Instances Num. Attributes
Diabetes Diagnosis 768 8
Spam Filtering 4601 57
Digit Recognition 2000 240
Table 1: Datasets used in this work, obtained from the UCI Machine
Learning Repository located at http://archive.ics.uci.edu/ml/.

Feature Costs

Feature Cost
Num. Times Pregnant 1.00
Glucose Tolerance 17.61
Diastolic Pb 1.0
Triceps 1.0
Insulin 22.78
Mass Index 1.0
Pedigree 1.0
Age 1.0

Table 2: Feature costs provided in the diabetes dataset.

Conclusion
Here we show that a simple modification to the random forest
algorithm allows for user control over the computational cost
of the trained classifier. In order to account for the increased
intra-forest correlation when more variables are considered at
each node split, we also test a boosting-like iterative sample
reweighting strategy (based on [3]), which generally improves
performance. Overall, these results indicate that for several
real world problems it is possible to significantly reduce test
time cost with minimal effects on accuracy.

Future Work

• Instead of selecting features greedily while constructing
forest splits, select features before building forest.
Consider variations on standard wrapper and filter
methods.

• In the case where common feature computational
subroutines exist, treat as a submodular optimization
problem, for which efficient approximation algorithms
exist.

• At each split, optimize the number of variables to include
in random subset, rather than using a fixed number.

Selected References

[1] Leo Breiman.
Random forests.
Machine Learning, 45, 2001.

[2] Feng Nan, Joseph Wang, and Venkatesh Saligrama.
Feature-budgeted random forest.
Journal of Machine Learning, 37, 2015.

[3] Simon Bernard, Sebastian Adam, and Laurent Heutte.
Dynamic random forests.
Pattern Recognition Letters, 33, 2012.

Acknowledgements
Thank you to Junjie Qin for valuable feedback.

http://archive.ics.uci.edu/ml/

