Deep Reinforcement Learning for
Flappy Bird
Kevin Chen

Abstract—Reinforcement learning is essential for appli-
cations where there is no single correct way to solve a
problem. In this project, we show that deep reinforcement
learning is very effective at learning how to play the game
Flappy Bird, despite the high-dimensional sensory input.
The agent is not given information about what the bird
or pipes look like - it must learn these representations
and directly use the input and score to develop an optimal
strategy. Our agent uses a convolutional neural network to
evaluate the Q-function for a variant of Q-learning, and
we show that it is able to achieve super-human perfor-
mance. Furthermore, we discuss difficulties and potential
improvements with deep reinforcement learning.

I. INTRODUCTION

Reinforcement learning is useful when we need an
agent to perform a task, but there is no single “correct”
way of completing it. For example, how would one
program a robot to travel from one place to another
and bring back food? It would be unrealistic to program
every move and step that it must take. Instead, it should
learn to make decisions under uncertainty and with very
high dimensional input (such as a camera) in order to
reach the end goal. This project focuses on a first step
in realizing this.

The goal of the project is to learn a policy to have an
agent successfully play the game Flappy Bird. Flappy
Bird is a game in which the player tries to keep the bird
alive for as long as possible. The bird automatically falls
towards the ground by due to gravity, and if it hits the
ground, it dies and the game ends. The bird must also
navigate through pipes. The pipes restrict the height of
the bird to be within a certain specific range as the bird
passes through them. If the bird is too high or too low,
it will crash into the pipe and die. Therefore, the player
must time flaps/jumps properly to keep the bird alive
as it passes through these obstacles. The game score is
measured by how many obstacles the bird successfully
passes through. Therefore, to get a high score, the player
must keep the bird alive for as long as possible as it
encounters the pipes.

Training an agent to successfully play the game is
especially challenging because our goal is to provide
the agent with only pixel information and the score.
The agent is not provided with information regarding
what the bird looks like, what the pipes look like, or
where the bird and pipes are. Instead, it must learn these
representations and interactions and be able to generalize
due to the very large state space.

Fig. 1: Three screenshots of the game Flappy Bird at
three different difficulties (easy, medium, hard) respec-
tively.

II. RELATED WORK

The related work in this area is primarily by Google
Deepmind. Mnih et al. are able to successfully train
agents to play the Atari 2600 games using deep rein-
forcement learning, surpassing human expert-level on
multiple games [1l], [2]. These works inspired this
project, which is heavily modeled after their approach.
They use a deep Q-network (DQN) to evaluate the Q-
function for Q-learning and also use experience replay
to de-correlate experiences. Their approach is essentially
state-of-the-art and was the main catalyst for deep re-
inforcement learning, after which many papers tried to
make improvements. The main strength is that they were
able to train an agent despite extremely high dimensional
input (pixels) and no specification about intrinsic game
parameters. In fact, they are able to outperform a human
expert on three out of seven Atari 2600 games. However,
further improvements involve prioritizing experience re-
play, more efficient training, and better stability when
training. [2]] tried to address the stability issues by
clipping the loss to 4+1 or —1, and by updating the target
network once in every C updates to the DQN rather than
updating the target network every iteration.

III. METHOD

In this section, we describe how the model is param-
eterized and the general algorithm.

A. MDP Formulation

The actions that the agent can take are to flap (a = 1)
or to do nothing and let the bird drop (a = 0). The state
is represented by a sequence of frames from the Flappy
Bird game as well as the recent actions that the player
took. Specifically, the state is the sequence shown in

St = (T4—histLent1y @t—histLen+1s -+ Tt—1, Gt—1, Tt) (D

v91L2(01) = Es,aNP(')§S’~E (T + In;}XQ(Sla a,; 91‘_1) - Q(57 a; 91))V91Q(5, a; 91) 2)

Equation E] where s; is the state at time ¢, x; is the pixel
input (or the frame or screen capture) at time ¢, and a; is
the action taken at time t. historyLength (or histLen)
is a hyperparameter that specifies how many of the most
recent frames to keep track of. This is to reduce the
storage and state space compared to saving all frames
and actions starting from ¢ = 1. The reason for storing
multiple =’s and a’s rather than storing a single frame x
is because the agent needs temporal information to play.
For example, the agent cannot deduce the velocity of
the bird from a single frame, but velocity is essential for
making a decision.

The discount factor was set to v = 0.95. The
transition probabilities and the rewards are unknown
to the agent. Since Q-learning is model-free, we do
not explicitly estimate the transition probabilities and
rewards, but instead directly try to estimate the optimal
Q-function. This is described further in the Q-learning
section.

However, we still must define the rewards intrinsic to
the game. Ideally, the reward should essentially be the
score of the game. It starts out as 0 and every time the
bird passes a pipe, the score increases by 1. However,
this is potentially problematic in that the rewards will be
very sparse. Specifically, if the bird dies instantly at the
start of the game, the reward would be similar to if the
bird died right before reaching the pipe. The performance
is clearly better if the bird survives up until the pipe
compared to dying instantly. Therefore, adding a reward
for staying alive encourages the agent to think simi-
larly. Without this additional reward, the agent should
eventually realize this, but adding the reward, called
rewardAlive, speeds up the training process. In total,
we have three rewards: rewardAlive, rewardPipe,
and rewardDead. The agent gets rewardAlive for
every frame it stays alive, rewardPipe for successfully
passing a pipe, and rewardDead for dying.

B. Q-learning

The goal in reinforcement learning is always to maxi-
mize the expected value of the total payoff (or expected
return). In Q-learning, which is off-policy, we use the

Bellman equation as an iterative update
Qi+1(87a) = ES'NE[T+’}/Hlaa;XQi<S/,a/)|S,a] (3)

where s’ is the next state, 7 is the reward, ¢ is the envi-
ronment, and Q;(s,a) is the Q-function at the ith itera-
tion. It can be shown that this iterative update converges
to the optimal Q-function (the Q-function associated with
the optimal policy). However, this is rote learning. To
prevent rote learning, function approximations are used
for the Q-function to allow generalization to unseen
states. Our approach uses the deep Q-learning approach
in which we use a neural network to approximate the Q-
function. This neural network is a convolutional neural
network which we call the Deep Q-Network (DQN).

A common loss used for training a Q-function approx-
imator is

1
Lz(az) = Es,awp(-) |:2
where 0; are the parameters of the Q-network at iteration
1 and y; is the target at iteration ¢. The target y; is defined
as

(yi — Q(s,a;ei)ﬂ @)

Y = Egrroe [r +ymaxQ(s',a';0;_1)]s,a)

for a given experience ¢ = (s, a,r,s’). An experience is
analogous to a datapoint such as in linear regression and
the replay memory, a list of experiences, is analogous
to a dataset such as in linear regression. The gradient of
the loss function with respect to the weights is shown in
equation [2} Thus, we can simply use stochastic gradient
descent and backpropagation on the above loss function
to update the weights of the network.

Additionally, we take an e-greedy approach to handle
the exploration-exploitation problem in Q-learning. That
is, when we are training, we select a random action
with probability € and choose the optimal action aop; =
arg max, Q(s,a’). In our implementation, we linearly
change the exploration probability e from 1 to 0.1 as the
agent trains. This is to encourage a lot of exploration in
the beginning where the agent has no idea how to play
the game and the state space is extremely large. It takes a
large number of random actions and as it starts to figure
out which actions are better in different situations/states,

it exploits more and tries to narrow down what the
optimal actions are.

C. Experience replay

A problem that arises in traditional Q-learning is
that the experiences from consecutive frames of the
same episode (a run from start to finish of a single
game) are very correlated. This hinders the training
process and leads to inefficient training. Therefore, to
de-correlate these experiences, we use experience replay.
In experience replay, we store an experience (s, a,r,s’)
at every frame into the replay memory. The replay
memory has a certain size and contains the most recent
replayMemorySize experiences. It is constantly up-
dated (like a queue) so that they are associated with the
actions taken with the recent Q-functions. The batch used
to update the DQN is composed by uniformly sampling
experiences from the replay memory. As a result, our
experiences are no longer likely to be correlated.

D. Stability

Moreover, to encourage more stability in decreasing
the loss function, we use a target network Q(s, a).
Q(s7 a) is essentially the the same as Q(s,a). The
network has the same structure, but the parameters may
be different. At every C updates to the DQN Q(s, a), we
update Q(s,a). This Q(s,a) is then used for computing
the target y; according to:

Vi = Egrne [r + ngXQ(s',a'; 0;1)|s,a| (6)
This leads to better stability when updating the DQN.

E. Pre-processing

Since we use a very high dimensional state, we actu-
ally perform pre-processing to reduce the dimensionality
and state space. The pre-processing is done over the
pixels, so we first extract the images from the state s;.
The original screen size is 512 x 288 pixels in three
channels, but we convert the image captured from the
screen to grayscale, crop it to 340 x 288 pixels, and
downsample it by a factor of 0.3, resulting in a 102 x 86
pixel image. It is then rescaled to 84 x 84 pixels and
normalized from [0, 255] to [0, 1]. I call this feature
extractor ¢(s).

F. Deep Q-Network

Our Q-function is approximated by a convolutional
neural network. This network takes as input a 84 x 84 x
historyLength image and has a single output for every
possible action. The first layer is a convolution layer with

32 filters of size 8 x 8 with stride 4, followed by a recti-
fied nonlinearity. The second layer is also a convolution
layer of 64 filters of size 4 x 4 with stride 2, followed by
another rectified linear unit. The third convolution layer
has 64 filters of size 3 x 3 with stride 1 followed by a
rectified linear unit. Following that is a fully connected
layer with 512 outputs, and then the output layer (also
fully connected) with a single output for each action.
To choose the best action, we take the action with the
highest output Q-value (a,,; = arg max,s Q(s,a’)).

G. Pipeline

Algorithm 1: Deep Q-learning algorithm for Flappy
Bird

initialize replay memory

initialize DQN to random weights

repeat
new episode (new game)

initialize state sg

repeat
extract z; from raw pixel data update state

s; with

add experience

er = (#(s1-1),ai—1,7¢—1,P(5;)) to replay
memory

take best action

ay = arg minaeactions Q(stv CL) with
exploration if training

uniformly sample a batch of experiences
from the replay memory

backpropagate and update DQN with the
minibatch

update exploration probability e

if C updates to DON since last update to

target network then
update the target Q-network

Q(s,a) < Q(s,a)
end
update state s; with a;
update current reward r; and total reward
total Reward
update game parameters (bird position, etc.)

refresh screen
until flappy bird crashes;

restart Flappy Bird
until convergence or number of iterations reached,

The pipeline for the entire DQN training process is
shown in Algorithm 1. It is as previously described
earlier in this section. We apply Q-learning but use

experience replay, storing every experience in the replay
memory at every frame. When we perform an update
to the DQN, we sample uniformly to get a batch of
experiences and use that to update the DQN. This is
analogous to sampling batches from a dataset using
SGD/mini-batch gradient descent in convolutional neural
networks for image classification or deep learning in
general. Then we update the exploration probability as
well as the target network Q(s,a) if necessary.

IV. RESULTS

A video can be found at the following link:
https://youtu.be/9WKBzTUsPKc. Our metric for evalu-
ating the performance of the DQN is the game score
(numper of pipes passed). The reported scores in the
tables are the average scores over 10 games (unless
otherwise specified).

A. Testing parameters

The Flappy Bird game was run at 30 frames per
second, and historyLength was set to 5. The dis-
count factor was 0.95 and the rewards were the fol-
lowing: rewardAlive = +0.1, rewardPipe = +1.0,
rewardDead = —1.0. The exploration probability e de-
creased from 1 to 0.1 over 600000 updates to the DQN.
The size of the replay memory was 20000 experiences.

For training, we used RMSProp with a learning rate
of le-6, decay of 0.9, and momentum as 0.95. These
were chosen similarly to that of [2]. To figure out better
parameters, some were done by trial and error. For
example, we noticed that the learning rate was too high
when the neural network weights began exploding, and
used a binary search algorithm to figure out the best
learning rate. If the learning rate was too low, it would
take longer to train. We did updates in mini-batches of
size 32 (experiences). We only begin training after the
replay memory has at least 3000 experiences and update
the target network Q(s7 a) once for every 1000 updates
to the DQN. Our convolution weights are initialized to
have a normal distribution with mean 0 and variance
0.1. This deep neural network was implemented using
TensorFlow.

B. Overall performance

The trained DQN plays extremely well and even
performs better than humans. We compare the results
of the DQN with a baseline and humans. The baseline
implementation flaps every z frames to keep the bird
in the middle of the screen. This baseline was chosen
because the pipe gaps locations are uniformly distributed
with the expected location to be in the middle of the

training difficulty flap every n human DQN
easy Inf Inf Inf
medium Inf Inf Inf
hard 0.5 17.625 82.2

TABLE I: Average score of DQN on varying difficulties
compared to baseline and human performance

training difficulty flap every n human DQN
easy Inf Inf Inf
medium 11 Inf Inf
hard 1 65 215

TABLE II: Highest score of DQN on varying difficulties
compared to baseline and human scores

screen. These comparisons are shown in table |I| (average
score) and table [II] (highest score).

The performance of the DQN is much higher than the
baseline and human performance. If the score was higher
than 1000, the score was considered to be infinity (except
for the human case where if they got a score above
100, this would be considered infinity). The human case
was generalized to be infinity if the user could play for
forever if he or she could focus and did not need to take
breaks (eat, sleep, etc.). Although the scores for human
and DQN are both infinity for the easy and medium
difficulties, in reality the DQN is better because it does
not have to take a break whereas the DQN can play for
10+ hours at a time.

In general, almost all of the failures in the hard
difficulty are because the bird flaps upwards when it
should be letting the bird drop, and then it dies. However,
once in a while, the bird will just barely clip the top-right
corner of the lower pipe as it is falling. Furthermore, I
noticed that the agent seems to take riskier moves when
it trains more. Thus, a follow-up test to resolve these
problems could be to encourage the agent to take the
moves with the lowest risk. To do this, we would have
the agent make a random move a small probability of the
time during training (even if the agent is supposed to be
evaluating the optimal action). To maximize the expected
return, the agent would have to play very safely.

C. Training time

In this section, we discuss how the number of training
iterations affects the performance of the Flappy Bird
agent. The number of training iterations refers to the
number of updates to the DQN (there is no exact defini-
tion of epoch here). Our results (see Table |lII}) show that
more training does not necessarily lead to better scores.
In fact there is some instability and the scores fluctuate

https://youtu.be/9WKBzTUsPKc

training iterations easy medium hard Game difficulty DQN (easy) DQN (medium) DQN (hard)
99000 1680.9 52.7 0.3 Easy Inf 99.3 1.5
199000 1026.8 101.8 11.6 Medium 1.11 Inf 1.5
299000 351.06 42.7 65 Hard 0.0 0.6 71.6
399000 1006.11 2598 71.6

TABLE III: Average score of DQN as a function of
learning rate

TABLE V: Performance of DQN after training on the
tested difficulty but initialized to random weights

iterations easy w/ rewardAlive medium w/ rewardAlive
Game difficulty DQN (easy) DQN (medium) DQN (hard) 99000 28.1 1680.9 2.6 52.7
Easy Inf Inf Inf 199000 128.4 1026.8 128.6 101.8
Medium 0.7 Inf Inf 299000 617.11 351.06 58.7 42.7
Hard 0.1 0.6 82.2 399000 282.3 1006.11 299.1 2598

TABLE IV: Performance of DQN on medium difficulty
with weights initialized from DQN trained on easy

with more training after a certain point. For example, the
hard difficulty had not reached this point of training and
consistently yields better results with more training. This
instability is inherent to many reinforcement learning
algorithms and could be further investigated in a follow-
up project. One potential solution would be to decrease
the learning rate as more training occurs or to increase
model complexity (neural network architecture).

D. Training with initial pre-trained network

Here, we describe results of a network which is initial-
ized to another pre-trained network. Specifically, when
training the network to play on the medium difficulty, we
initialize the DQN to have the same weights of a network
that was previously trained on the easy difficulty. This
yielded the best results performance-wise compared to
any of our other trained networks. The network was
trained on the medium difficulty for 209,000 updates
after being initialized to the previously trained DQN on
easy mode.

From Table it is clear that not only does the
DQN perform better on the difficulty it was trained on,
but it also performs better on the easier difficulties. It
remembers how to perform well on the easy mode while
it modifies it weights to also perform well on the medium
difficulty. The same could not be said about the networks
which were directly trained on the easy/medium/hard
difficulties (as shown in Table , which is a very
insightful observation.

After training for 199 iterations on each difficulty
(directly) with random initialized weights, we got the
results shown in Table [V] These networks do not gener-
alize well to different difficulties.

TABLE VI: Comparison of training with additional
rewardAlive and without it

E. Removing the reward for staying alive

In this section, we test whether the rewardAlive
reward truly leads to faster convergence or better re-
sults as suspected. The results in Table show that
indeed adding a rewardAlive reward accelerates the
training process since it provides an incentive which is
directly correlated to the score/goal. More importantly,
it prevents sparse rewards to encourage faster learning.
Therefore, if a reward is directly correlated with the
intended reward (such as score of the game), then it is
beneficial to use this correlated reward in addition to the
intended reward to speed up the training process.

V. CONCLUSION

We were able to successfully play the game Flappy
Bird by learning straight from the pixels and the score,
achieving super-human results. However, training was
not consistent in that more training did not necessarily
correlate with better score. The model could be overfit-
ting or forgetting so future work could attempt to explore
and resolve this issue. Another very important area that
could be refined is the experience replay. We uniformly
sampled from the replay memory, but some experiences
have more impact on successfully training the DQN
than other experiences. Being able to prioritize these
experiences would lead to better performance, efficient
training, and faster convergence. Moreover, in this game
we removed the background and score to reduce clutter
and increase likeliness of successful training. It would be
interesting to see how restoring the background affects
agent performance. Overall, our results show that deep
reinforcement learning is a step in the right direction and
has a lot of potential for further application.

(1]

[2]

(3]

REFERENCES

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. Riedmiller. Playing Atari with Deep Reinforce-
ment Learning. In Deep Learning, Neural Information Processing
Systems Workshop, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattle, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis.
Human-level control through deep reinforcement learning. Nature,
518(7540):529-533, 2015.

T. Schaul, J. Quan, I. Antonoglou, D. Silver. Prioritized Experience
Replay. arXiv: http://arxiv.org/abs/1511.05952

	Introduction
	Related Work
	Method
	MDP Formulation
	Q-learning
	Experience replay
	Stability
	Pre-processing
	Deep Q-Network
	Pipeline

	Results
	Testing parameters
	Overall performance
	Training time
	Training with initial pre-trained network
	Removing the reward for staying alive

	Conclusion
	References

