Optimization of Optical Structures Using Machine Learning Algorithms
Tyler Hughes and Yu (Jerry) Shi

Introduction
• In optical engineering, it is important to be able to design devices with a desired reflection spectrum
• Such designs are nontrivial and often rely on complex optimization algorithms
• We explore the use of machine learning algorithms to control the reflection spectrum of a multi-layer structure
• We show that Markov Decision Process produces structures with desired spectra

Background
• Multi-layer structure
 • Refractive indices: \{n_1, ..., n_K\}
 • Layer lengths: \{d_1, ..., d_K\}

Markov Decision Process
• Objective:
 • Given: \(r_{\text{target}} (\lambda_i)\)
 • Find: \([n_i, d_i]\) to minimize
 \[f([n_i, d_i]) \equiv \| r_{\text{target}} - r_{\text{struc}} ([n_i, d_i]) \|^2 \]
• Definitions and Procedure
 • \(K\) = number of layers
 • \(W\) = number of points sampled in wavelengths
 • \(Q\) = number of points sampled in reflection
 • State: discretized reflection spectrum

Objective function
\[J_{n, d} = \| r_{\text{target}} - r_{\text{struc}} \|^2 \]

MDP Results

MDP: ~\(KQ^2W\)

Brute force: ~\((\text{Resolution})^{2K}\)

Advantages
• Computation complexity: # of spectra calculated
• Immune to local minima

Performance with increase in the number of layers

On average, 23.4% of points fall around the global minimum

Acknowledgement
We would like to thank Prof. Andrew Ng, Albert Haque, and the rest of the CS 229 teaching staff for their support throughout the CS 229 class and on our project.