Summary

- **RNTN** has been previously successfully applied to sentiment analysis. However, its training process is time-consuming.
- Our objective is to speed up the training of RNTNs with mini-batch gradient descent, which involves many matrix-vector multiplications.
- The existing code performs forward and backward propagation one example at a time, and the matrix-vector multiplication is executed one node at a time.
- We observe that the weight matrix is shared across training examples and across nodes, making it possible to combine many matrix-vector multiplications into one large matrix-matrix multiplication.
- We have implemented our idea. As a result, the training time has been significantly reduced.

Recursive Neural Tensor Network (RNTN)

- Each training example has its own parse-tree structure.

![Diagram of a tree structured RNTN](image)

- Parameters \(\theta = (L, W, W_v, V) \):
 - \(L \): word embedding matrix.
 - \(W \): weight matrix.
 - \(W_v \): classification matrix.
 - \(V \): weight tensor.
- Node vectors are computed starting from the leaf nodes.
 - Representation at node \(i \):
 \[x_i' = \tanh \left(\frac{x_i}{x_R} \right)^T V \left(\frac{x_i}{x_R} \right) + W \left(\frac{x_i}{x_R} \right) \in \mathbb{R}^d, \]
 - Soft classification at node \(x_i' \):
 \[y_i' = \text{softmax}(W_i x_i). \]
 - Each node \(x_i' \) has a target vector \(t_i' \).
- Error function \(E(\theta) = -\sum_i \log y_i' + \lambda ||\theta||^2 \).
- **Training:**
 - Data set: Stanford Sentiment Treebank
 - Batched Adaptive Gradient Descent (AdaGrad)
 - Existing code: CoreNLP

Forward Propagation

- **Grouping Nodes Across Trees (assume batch size = 3)**
- **Step 1:**
 - \(S' = \sum_{i=1}^{d} \delta_{s_i} \text{com} \cdot S' + S' \cdot f'(x) \)
 - where \(\delta_{s_i} \text{com} : \) Hadamard product, \(f'(x) = 1 - x^2 \).
- **Step 2:**
 - \(x_i' \)
 - **Step 3:** Traverse up until all nodes are visited.

Grouping \(k \) pairs of nodes

- Concatenation vectors: let \(u_i = [x_i, x_i'] \in \mathbb{R}^{2d}, i = 1, \ldots, k \)
- Grouping matrix-vector multiplication:
 \[W_{u_1} W_{u_2} \cdots W_{u_k} = W [u_1 u_2 \cdots u_k]. \]
- Grouping tensor-vector operation:
 \[V \in \mathbb{R}^{2d \times d \times d} \]
 \[[u_1 V u_2 V u_3 \cdots u_k V] \in \mathbb{R}^{d \times k} \]

Backward Propagation

- **Formula for errors \(\delta_i \) at node \(i \).**
 - \(\delta_i \text{com} = \delta_i \text{com} \cdot \text{down} \) if \(x_i' \) is the root
 - \(\delta_i \text{com} = \delta_i \text{com} \cdot \text{down} \) if \(x_i' \) is the left child of \(x_i \)
 - \(\delta_i \text{com} = \delta_i \text{com} \cdot \text{down} \) if \(x_i' \) is the right child of \(x_i \)
 - \(\delta_i \text{com} = \delta_i \text{com} + S' \cdot f'(x) \)

Results

- **Word Vector size = 50.**

<table>
<thead>
<tr>
<th>Batch Size</th>
<th>Training Time Per Epoch (sec)</th>
<th>Before</th>
<th>After</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1529</td>
<td>1012</td>
<td></td>
<td>33.8%</td>
</tr>
<tr>
<td>50</td>
<td>1532</td>
<td>975</td>
<td></td>
<td>36.4%</td>
</tr>
<tr>
<td>100</td>
<td>1567</td>
<td>9650</td>
<td></td>
<td>38.4%</td>
</tr>
</tbody>
</table>

- **Batch size = 50.**

<table>
<thead>
<tr>
<th>Word Vector Size</th>
<th>Training Time Per Epoch (sec)</th>
<th>Before</th>
<th>After</th>
<th>Reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>191</td>
<td>136</td>
<td></td>
<td>28.8%</td>
</tr>
<tr>
<td>50</td>
<td>1533</td>
<td>975</td>
<td></td>
<td>36.4%</td>
</tr>
<tr>
<td>100</td>
<td>12711</td>
<td>7828</td>
<td></td>
<td>38.4%</td>
</tr>
</tbody>
</table>

- Our code is at https://github.com/avati/CoreNLP/tree/tnnt