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Problem Definition

Given a Yelp user, we want to give recommendations that are very different from what a
user has previous tried. We call these ‘divergent recommendations’. For example, given
that I like Domino’s Pizza, a current recommendation system might recommend Pizza my
Heart. But perhaps I have tried every single topping combination and want to try
something entirely different, like Ethiopian food. Our recommendation system will find
and suggest the best divergent recommendations.

Preprocessing Data

Yelp Dataset

* Consists of 1.6 million reviews, 300k users, and 61k businesses

"Another favorite of mine is the barbecue
chicken pizza, it has a great kick to it and
it's big enough for two people” |

NLP Techniques

* Bag of words of review texts minus stop words
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Methodology

To predict a uset’s rating, we learn the weights of each feature. We tried 4 different models: Linear
Regression, SVM, Random Forests, and CE. We also had 2 different feature sets of varying complexity
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1) Linear Regression

2) Support Vector Machines
3) Random Forests
4) Collaborative Filtering
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Can think of the ‘best’ recommendation in terms of whether the user likes exploring vs exploitation

SCOTE final = Py + (1 — a)sim(u, i) where a represents an exploration constant

If «is low, then we want to explore more than exploit. If « 1s high then we want to exploit more than explore

Future Work

1) Other Similarity Metrics — Pearson Correlation, KINN
2) Other Models — Neural Networks
3) Predicting Ratings as Classification — Naive Bayes, Clustering, etc.
4) Content-based Filtering




