Clustering a Customer Base Using Twitter Data

Vanessa Friedemann

I. INTRODUCTION
There are numerous applications within the retail industry for clustering large populations including:

1. allows company to target advertising
2. identifies untapped markets for expansion
3. feeds recommendation systems

Our approach uses publicly available Twitter data to perform customer clustering for a chosen company, Nike.

Why Twitter Data?
Large-scale private-sector data, such as sales history and loyalty account information, prohibitively difficult to obtain. For any company in need of information regarding customers other than its own, there is a need for an alternative.

II. DATA SET AND FEATURES

Features
For each sample user, the final feature set includes:

1. statuses posted
2. number of followers
3. number of accounts following
4. language
5. influencer following relationships

Pre-processing Steps
Requirements of k-means lead us to perform the following pre-processing steps:

1. distance correlated with similarity -> map language to geographic coordinates
2. non-categorical features -> PCA on influencer following relationships
3. equally-weighted features -> feature range normalization

In addition, we discard features that exhibit very low variance.

Tools Used
To gather the data from Twitter, we use Tweepy. We use SQLite to store the data in a database. For all machine learning algorithms, we use the scikit-learn Python package.

III. METHODS

Silhouette Coefficient
We compute the optimal number of clusters for k-means by selecting the first k value with a silhouette coefficient larger than $\Gamma = 0.7$. The silhouette coefficient is computed as

$$s(i) = \begin{cases}
1 - \frac{\hat{a}(i) - \hat{b}(i)}{\hat{b}(i)} , & a(i) < b(i) \\
0 , & a(i) = b(i) \\
\frac{a(i)}{\hat{b}(i)} - 1 , & a(i) > b(i)
\end{cases}$$

This is the ratio of the similarity of a sample to its own cluster versus the next best cluster.

Clustering Performance
Given the optimal value for k chosen above, we evaluate the clustering performance on our data set by computing the following

$$q(x, k) = \frac{\sum_{i=1}^{k} \frac{1}{\sum_{j=1}^{m} 1(x(j) \in c_i)[x(j) \neq x_i]}|x_i - c_i|}{\sum_{i=1}^{k} \frac{1}{\sum_{j=1}^{m} 1(x(j) \in c_i)[x(j) \neq x_i]}|x_i - c_i|}$$

This is the ratio of average intra-cluster variation to average inter-cluster distance.

IV. RESULTS

Selecting the Number of Clusters
We bound the number of clusters between $k = [2 : 15]$. We plot the silhouette coefficient vs. number of clusters. The below figure shows that the optimal number of clusters for our data set is $k = 5$.

Measuring Clustering Performance
We compute a q score using $k = 5$ for randomized data, our data set, and perfectly clustered data. Low values of q correspond to better clustering performance. The plot below indicates that our clustering performance is in between that of ideal data and that of randomized data.

Visualizing Clusters
Since our data is in R^{13}, we cannot readily visualize it. Instead we show a representation of a clustering in R^2 that achieves the same q score. This suggests that our own data set can be cleanly clustered in its higher dimensionality space.

V. CONCLUSION

Discussion
We have shown that the quality of clustering achievable using our techniques is midway between that of ideal and randomized data. Further, the clusters created are remarkably pronounced and well-defined. The outcome of these experiments further reinforces the credibility of using social media data for market analysis.

Future Work
Future research on this topic should focus on applying these algorithms to a more reliable data set. More factual data sources might include credit card transactions, newsletter subscriptions, and Amazon shopping cart history.