Applying adversarial examples to neural language modeling
Onkur Sen (with Isaac Caswell and Allen Nie)

Overview of adversarial learning

- Idea: add noise to correctly-classified example to create slightly-perturbed, incorrectly-classified example with high confidence
- Illustrates the sensitivity of classifiers
- Training with adversarial examples makes classifiers more robust

Our approach: apply to language models

- Model: mean-pooling RNN with LSTM
- CNN implemented but untested
- Modify objective to simulate training with adversarial examples
- Generate adversarial examples by perturbing training examples

\[\tilde{J}(\theta, x, y) = \alpha J(\theta, x, y) + (1 - \alpha) J(\theta, x + \epsilon \text{sign}(\nabla_x J(\theta, x, y))) \]

Summary of results

- Sometimes it works better, sometimes it doesn’t
- Best successes: large perturbations! ($\epsilon = 0.5$ performs 1-2% better)
- Massive hyperparameter search needed: is our best model better than best vanilla model?

Nearest neighbor visualization of adversarial example

Original:
this <UNK> guy is a real genius! the movie is of excellent quality and both entertaining and <UNK>.
 i didn’t know what a girl was before i learned it here.

Adversarial:
speech <UNK> pretentious is a horse genius! the age is of excellent quality and both entertaining and <UNK>.

 i horse didn’t know what a horse girl was before i learned it here.

Perturbation at word level

- “the” => “the”
- “world” => “world”
- “is” => “is”
- “so” => “movie”
- “full” => “full”
- “of” => “movie”
- “a” => “a”
- “number” => “movie”
- “of” => “movie”
- “things” => “things”

NN of perturbation to pairwise word distances

<UNK>-role <UNK>-role <UNK>-role <UNK>-role <UNK>-role …

Next steps

- Better visualization of adversarial sentences, incorporating language model
- Create adversarial examples directly?

Special thanks: Jon Gauthier