Applications of Unsupervised Learning to Business Meta-Data, using Yelp Data

Eric Wang Charles Zhang Stanford University, Dept. of Statistics Stanford University, Dept. of Statistics

MOTIVATION

- Physical businesses (restaurants, hotels, retail) provide a variety of "products".
- QUESTION: Can we group these businesses by their "products"?
- Businesses choose advantageous locations to sell their products.
- QUESTION: Can we distinguish between different types of business locations and business groupings?

DATA

- We use data from Yelp and apply unsupervised learning techniques to this business meta-data to answer these questions.
- 61K Businesses, 10 Cities, 1.5M reviews, 500K tips.

SOM Business Neighborhoods

Example Business Attribute Clusters

• Center Cut Steakhouse

Fast Tex-Mex

Night Life
Diamond Club

Fuji Japanese Steakhouse

Taco Bell
 El Pollo Loco

El Pollo Loco • Baccarat Lounge

Mastro's Ocean Club • Chipotle • Artisan Hotel Boutique

Methodology/Procedure

- 1. Form business "neighborhood" using SOM.
- 2. Pre-process business meta-data using PCA
- Choose the correct k for K-Medoids using the Gap Statistic,
- Cluster restaurants by their attributes using K-Medoids.
- Assign businesses to their neighborhood with their class.
 Cluster the neighborhoods using K-Means.

Algorithms

K-Medoids is computationally more expensive, but more robust to outliers and categorical data thank K-Means.

SOM is an online algorithm that preferences equal sized clusters and uses a uniform initialization.

Algorithm 2 Self-Organizing Maps (Online)		
1: r	repeat ▷ Rep	eatedly present the training data to the algorithn
2:	for $i = 1: m$ do	
3:	$w_i \leftarrow arg \min_{n_j} x_i - n_j _2^2$	⇒ Find the closest neuror
4:	for $n_j \in w_i \cup \Gamma(w_j)$ do	
5:	$n_j \leftarrow n_j + \alpha \Theta(n_j, w_i)(x_i - n_j)$	▶ Update the closest neuron, and its neighbors
6:	end for	(5)
7:	end for	

Gap Statistic compares the actual within-cluster error to the expected within-cluster error and provides a decision rule for choosing the value of k.

$$Gap(k) = \frac{1}{B} \sum_{b} log(W_{kb}^*) - log(W_k)$$

Examining Business Clusters and Relation to Neighborhoods

Dimension Reduction and Evaluation of Cluster Count

Discussion

- We find that businesses cluster across attributes beyond the coarse categories provided in Yelp metadata
- Further, the interpretability of our results improved significantly by adjusting scaling and using k-medoids
- Clustering neighborhoods seems to be dominated by volume of user reviews; seem to identify neighborhoods with high activity
- Extensions include:
 - Assigning clusters to other cities and comparing mix of businesses between cities
 - Further exploring relationship between neighborhoods and business mix
 - Replacing SOM with GSOM
 - Clustering businesses by users and their ratings with dimension reduction. This could then be contrasted with the business attribute clusters