Automated Stitching and Spine Detection of Spiny Projection Neurons

E. Albarran¹, X. Sun²
¹Neurosciences Graduate Program, ²Biology Department, Stanford University, Stanford, CA

Background and motivation

A complex problem in neurobiology, and microscopy in general, is image processing of neuronal processes. Although some software exists to help extract imaging data, they are currently not sophisticated enough and neuroscientists are thus left to manually or crudely stitch together images of several compartments belonging to the same cell, in order to analyze cellular properties such as the number of dendritic spines.

Goal: Here we apply object recognition and machine learning techniques to approach this issue in order to process and analyze images more automatically and efficiently.

2-photon imaging (data summary)

1092 image tiles (12 cells taken across 4 mice)
Tiles are 512 x 512 pixel projections of 2-stack images

Project Outline

1. Pre-process the tile images
2. Extract features from tiled images (Scale-Invariant Feature Transform, SIFT)
3. Stitch tiles together based on matched features (Random Sample Consensus, RANSAC)
4. Detect dendritic spines using feature detection and random forest classifier (kastik framework)
5. Compare results of automated spine counting with manually stitched and counted samples

Average error = 7 (across 12 cells)
Where error is sum of px offsets from manually stitched

Analysis and Summary

Spines Counted

Future Directions

1. Collect many more images (sample size is currently too small)
2. Try different forms pre-processing for the images (in order to emphasize different features such as edges)
3. Experiment with different multi-class classifiers (compare to random forest classification)
4. Combine Co2+ imaging data in order to detect active spines, which could be used to determine upstream inputs to any given SPN spine.

Acknowledgments

We thank Yu-Wei Yu (lab of Jun B. Ding) for help in the data acquisition, Saurabh Vyas (lab of Krishna Shenoy) for suggestions on mosaic stitching, Irene Kaplan (TA) for advice with image processing and project direction, and Prof. Andrew Ng.

References