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1 Introduction and Background

After completing an examination or treatment
with a patient, doctors record detailed notes known
as medical records. These records typically in-
clude a summary of past medical history, medica-
tions, a brief hospital course, discharge diagnoses,
etc.

The ICD coding system is a relatively compre-
hensive system with support for most symptoms,
operations, and diseases (the ICD-9 system has
over 17,000 codes, and the ICD-10 system has
over 100,000). ICD codes are important because
they are a computer-readable summary that is in-
valuable for collecting statistics, and hospitals use
these codes to predict risk factors, mortality rates,
etc.

The problem of automatic ICD coding gained
significant interest in the biomedical informatics
research community following the release of the
”2007 Computational Medicine Center Interna-
tional Challenge: Classifying Clinical Free Text
Using Natural Language Processing”. In partic-
ular, two styles of approaches were popular, rule-
based algorithms (such as [5]), and machine learn-
ing algorithms. Rule-based methods were found to
be surprisingly effective [1].

Previous work on using text-based machine
learning algorithms have typically relied on using
bag-of-words features and expert-crafted rules [4].
However, such methods have been shown to scale
poorly with the large label space [3], and no re-
sults to date have achieved a practically usable ac-
curacy on this problem. Recent work has applied
intuitions about the structure of the problem, such
as using hierarchical SVMs [2] to leverage the fact
that the many labels are specific instantiations of
others.

The goal of our project is to understand the er-
rors made by previous work on this problem, dis-
cover additional structure in the data, and leverage
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Figure 1: The distribution of codes on the MIMIC
IIT dataset. The x-axis is the number of codes, and
the y-axis is the percentage of coverage over the
dataset.

that to build a better model and improve accuracy.

2 Dataset

We used the MIMIC III dataset for our project,
which contains roughly 50,000 emergency room
discharge records from a single hospital. These
notes were hand-labeled with ICD-9 codes by 3
experts (two hospitals and a company) and then
aggregated together. A single note typically has
10-15 codes.

There are several well-known challenges with
existing medical record datasets, some of which
we do not attempt to tackle in this project:

1. Label distribution: The distribution of la-
bels is incredibly lopsided, since only a small
minority of symptoms and diseases are com-
mon. In our dataset, a total of 6985 la-
bels were present, but the first 500 labels ac-
counted for approximately 80% of all codes,
and approximately 1500 codes had only 1 ex-
ample. This distributino is shown in figure 1.

2. Label noise: ICD codes are known to be very
noisy [6]. For example, in the cited report,



65% of Alzheimer’s cases were present in the
notes but not coded, and 5% of cases were
coded without evidence in the note. Similar
numbers hold for other diseases.

3 Baseline Model
3.1 Model

For our baseline model, we used a multi-label,
multi-class logistic regression model with L1 reg-
ularization to enforce sparsity of features. We
implemented our model using Theano and used
Scipy for optimization.

3.2 Features

We tried several variations of bag-of-words fea-
tures, and in the end, we settled on using the SPE-
CIALIST lexicon as a dictionary containing rel-
evant words and phrases. Phrases proved to be
important, for example, the feature “urinary tract
infection” is a great feature for the urinary tract in-
fection, but the individual words are very generic
and low-precision.

In total, there were 484,628 phrases we ex-
tracted from the lexicon, and after filtering by fre-
quency in our dataset, we ended up with approxi-
mately 38,556 features.

3.3 Results

While our entire dataset had 6985 total labels, we
focused on a small 9-label subset in order to do in-
depth error analysis. For this subset, we achieved
an macro-averaged F1 score of 60%. We scaled
up to 30 labels, this score dropped to 45%. We
report our results in table 1, and the top 3 features
for each code in table 2. Unfortunately, we did
not yet find other paper in the literature that uses
the MIMIC III dataset, but F1 scores in previous
work have typically ranged from the 80% range on
10 codes (with hand-engineered features), down to
about 15% on 700 codes [2].

3.4 Results

Surprisingly, the features learned were very rea-
sonable, except for “Pulmonary Hypertension”,
which had the lowest training support out of all
9 labels.

Features learned were typically drug names
(such as “Albuterol”, ”Singulair” for Asthma),
naming variations (such as HCAP, for hospital
acquired pneumonia), or generally related proce-

dures (such as intubation/extubation for respira-
tory failure).

3.5 Error Analysis

We observed several phenomena during our error
analysis, and we categorized several commonly
occurring ones. Typically, different codes present
different types of errors, which means that this
list is likely incomplete since we only analyzed 9
codes in-depth.

3.5.1 Overfitting to Noise

This was one of the most common errors made by
our model. For false negatives our model typically
picked up a single strong signal that was correct,
but it was drowned out by several hundred smaller
features which summed up to cancel out the cor-
rect signal (each note has on the order of 300-700
features firing). A typical false positive looks like
(in this case, we are trying to predict pneumonia):

Top Features | Weight | Bottom Features | Weight
pneumonia | 2.108 ESLD -0.233
PNA 1.130 neither -0.228
levofloxacin | 0.837 blastic -0.210
LLL 0.448 mg oxide -0.142
lower lobe 0.282 high normal -0.130

A false positive typically has many some-
what related (such as “intubation’/’extubation”
for acute respiratory failure) or completely unre-
lated words with small positive scores that sum up
to a certain threshold. Although we added L1 reg-
ularization to enforce sparsity, it only zeroed out
some of the weights and many were still left with
small ones.

3.5.2 Label Structure

ICD-9 codes form a hierarchy, but if a patient has
some specific disease such as “diabetes with renal
complications”, the doctor does not apply every
code on the path from the root to the code of inter-
est. Instead, there are specific coding guidelines,
such as only the most specific code should be used,
or that certain codes are mutually exclusive. If our
model predicted diabetes and kidney failure, we
would be wrong. In our 9 code analysis, we only
used the most general forms of diseases, and thus,
we had false positives whenever a more specific
form of a disease was present.

3.5.3 Requires deeper inference/computation

A large class of these errors arose from test results
in which the only evidence for a blood-related di-
agnoses is a low hematocrit (% of red blood cells



ICD Code Precision | Recall | F1 Score | Support
Urinary Tract Infection 0.82 0.75 0.78 1057
Thrombocytopenia 0.60 0.39 0.47 493
Pneumonia 0.59 0.49 0.53 756
Acute Resp. Failure 0.70 0.71 0.71 1173
Anemia 0.49 0.42 0.45 884
Cardiac Arrest 0.63 0.37 0.47 209
Asthma 0.72 0.47 0.57 354
Rheumatoid Arthritis 0.78 0.28 0.41 112

Pulmonary Hypertension 0.06 0.02 0.03 56
Macro-averaged total 0.65 0.56 0.60 5094
Table 1: Test set F1 scores for baseline model.

ICD Code First Second Third
Urinary Tract Infection UTI Urinary Tract Infection Urinary Tract
Thrombocytopenia Thrombocytopenia HIT Antibody

Pneumonia Pneumonia HCAP Hospital Acquired Pneumonia
Acute Resp. Failure Respiratory Failure Intubation Extubation
Anemia Anemia Normocytic Dilution
Cardiac Arrest Arrest PEA CPR
Asthma Asthma Albuterol Singulair
Rheumatoid Arthritis Rheumatoid Rheumatoid Arthritis Arthritis
Pulmonary Hypertension Moderate Contrast Although

Table 2: Top indicators for baseline model.

by volume, for anemia) or low platelet count (for
thrombocytopenia). For example:

Test Result Diagnosis

PLT SMR-LOW PLT COUNT-84* | Thrombo.
Hematocrit is 28.8; platelets 357. Anemia

Hematocrit of 36; platelet count 183. | Thrombo.

Our model can only pick up on single words,
and cannot execute logic such as comparing test
results against a threshold.

Some more difficult errors are ones involving
judgement of the severity of an illness. Our model
commonly predicted false positives for “acute res-
piratory failure” when the true label was “acute
respiratory distress”, since outside of explicitly
mentioning “distress” and “failure”, the two codes
present similar features. The only difference we
observed was that the “failure” cases were more
severe than the distress” cases, and indeed, the
two codes are mutually exclusive by the ICD-9
coding guidelines.

3.5.4 Context

A nonzero amount of our false positives came
from features firing from the "Medical History”

section, which for some diseases should not be
coded. However, for others, such as chronic dis-
eases (such as rheumatoid arthritis, which is an au-
toimmune disease which attacks the joints), being
present in the medical history is enough to justify
a code.

3.5.,5 Multi-word understanding

In many cases, the only good feature that fires is
one related to a disease, but not necessarily enough
to make a decision on its own. For example, the
following is a sentence from a note coded with
thrombocytopenia, or low platelet count.

She also had acute platelet drop
while on balloon pump and heparin.

“Platelet” is a feature that is obviously relevant
to thrombocytopenia, but it is common to mention
it with blood tests and other blood-related com-
plications, so it is a very low-precision feature.
However, the phrase “acute platelet drop” is very
indicative of thrombocytopenia, especially when
it is mentioned with heparin, which is an antico-
agulant that commonly causes platelet levels to
drop, resulting in heparin-induced thrombocytope-




0.56 2. Embedding

l0.08 F—

Segment Text ‘

-1.23

o 01 0.1 0.5 0 o
SO W) o o

0.10 ‘ Logistic Regression ‘

1. Segment Selection 3. Classification

Figure 2: A diagram of our model
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nia (abbreviated as HIT, which is one of the top
features). Part of the issue here is that we don’t
have a good mechanism for automatically extract-
ing good phrase features from the text.

4 Full Model
4.1 Model

We wished to revise our model in order to fix some
of the errors we observed - in particular, we fo-
cused on enforcing sparsity to reduce overfitting,
high-level context understanding, and multi-word
understanding. A pictoral representation of our
model is located in figure 2.

Our model is roughly split into 3 parts.

1. We divide each document into multiple seg-
ments (we used a heuristic rule and divided
be section, such as “medical history”, hos-
pital course”), and score each segment with a
coarse model. We simply used a linear func-
tion with weights initialized from our base-
line model. This segment selection process
helps reduce the number of features that fire,
and allows the model to assign low scores to
sections such as "Medical History”.

2. We embed the best segment, either using an
RNN (with the word embedding layer initial-
ized with word2vec) or as a bag of words.

3. We score the embedding using logistic re-
gression (linear layer + softmax). To allevi-
ate non-differentiability problems, we multi-
ply the segment score into the logits before
passing it into the softmax.

Due to time limitations, we have currently only
implemented this model to work for binary classi-
fication on one code.

Additionally, there are a few architectural prob-
lems which we are in the process of figuring out
how to solve. One is that this model trains ex-
tremely slowly due to the non-differentiability of
using a max for segment selection, and we are cur-
rently multiplying in the score to the logits as a
workaround instead of resorting to Monte-Carlo
methods such as REINFORCE. The second is that
noisy features still end up affecting the segment
selection, which further slow down training since
only weights from the best segment get adjusted
due to the aforementioned differentiability prob-
lems.

4.2 Results

Again, due to how slowly the model trains, we
have run very few experiments for this model. So
far, we have done experiments on anemia with a
balanced dataset consisting of equal numbers of
positive and negative labels, and have achieved
a test F1 score of 42% with the bag-of-words
embedding, and 35% with the RNN embedding.
These results are only slightly worse than our
baseline, but the problem is much easier due to the
balanced dataset.

5 Conclusions

We presented a baseline linear model, which to the
best of our knowledge, has achieved comparable
results to several other pure classification-based
methods that have previously used.

We have not seen good results from our full
model yet, but we are in the process of running
more training iterations and possibly rethinking
our architecture to make it easier to train.

6 Future Work

There are several potential problems of interest
that we have not addressed in this project. One is
exploiting the structure of the codes/labels, since
we know that some labels are mutually exclusive,
some are a conjunction of two other labels, and
some are subclasses of other labels. The subclass
observation has been explored in previous work,
but not the others.

Another potential problem to tackle is address-
ing the codes which have little training support be
exploiting outside knowledge. Each code has a
short description, and using knowledge bases or
the Internet can provide the additional information



necessary for a model to justify a label. How-
ever, since these are rare codes, it’s not clear if
there is a strong practical need to get these correct,
and much of previous work (especially ones with
hand-engineered features) have only focused on
subsets of codes, as we have done in this project.

Finally, an important problem to tackle is the is-
sue of noisy labels in the dataset. We wish to apply
ideas such as semi-supervised learning and boot-
strapping to improve our model’s ability to handle
label noise.
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