Data Fusion for Predicting Breast Cancer Survival Linbailu Jiang, Yufei Zhang, Siyi Peng

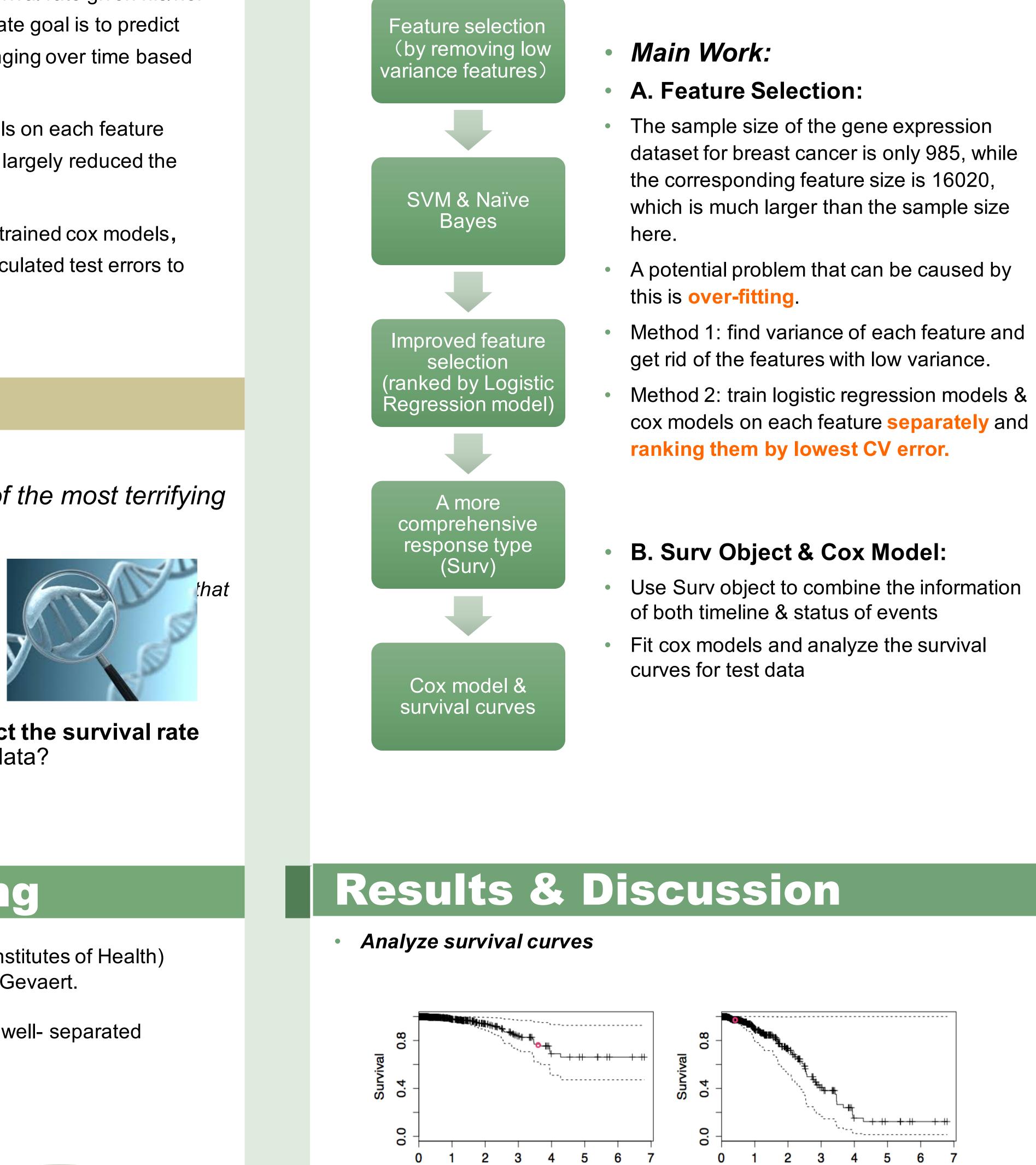
Abstract

- In this project, we want to understand a patient's survival rate given his/her genome pattern and time since diagnosis. Our ultimate goal is to predict the survival rate of a patient with breast cancer changing over time based on some related genomic data.
- By training logistic regression models and cox models on each feature separately and ranking them by lowest CV error, we largely reduced the number of features in our models.
- We combined the timeline and status of each event, trained cox models, plotted survival curves for test samples, and then calculated test errors to evaluate our models.

Background

Gancer is usually considered as one of the most terrifying diseases in our current society:

As severe as it is lethal in general, there're many may affect a patient's survival.



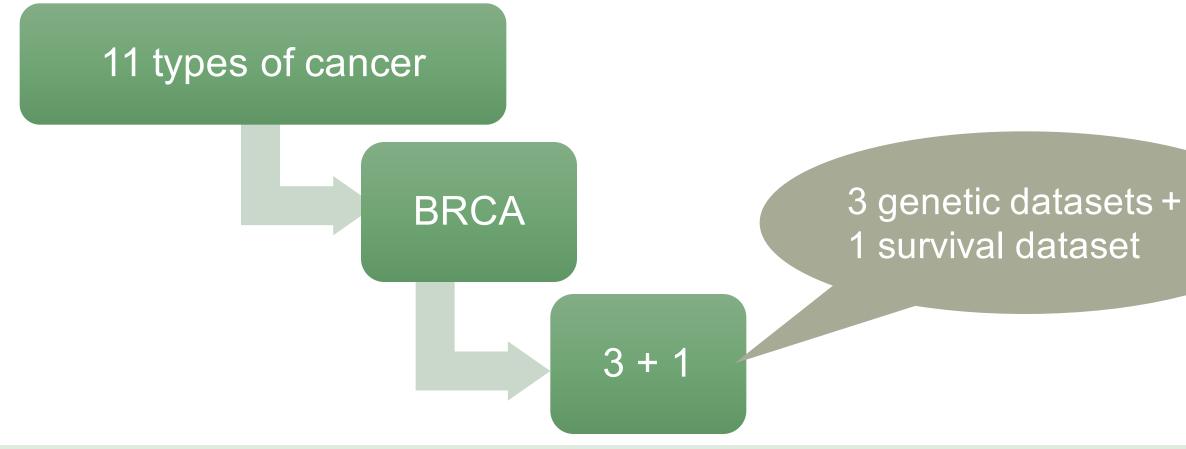
Age, treatment pathway, genome patterns...

IS it possible for us to create a model to **predict the survival rate** of a patient, just by analyzing his/her genetic data?

Data & Preprocessing

Data: The data of our project is from NIH(National Institutes of Health) Project, and we obtained them from Professor Olivier Gevaert.

The data are all pre-possessed, log-transformed, and well- separated based on cancer type into 11 dataset.



Method Overview

Figure 1: Survival Curves for test samples with Event 0

Both status are alive, but curves look very different. Why? They have different timeline!

(a) Ex1: Event 0 on the 1321th Day

Results & Discussion

(b) Ex2: Event 0 on the 189th Day

(a) Ex1: Event 0 on the 1321th Day

Similar timeline with different status. Person 1 is predicted to be alive on 1321th day & Person 2 is predicted to be dead on 1365th day. Both are consistent with their actual status in test data.

Breast Cancer Model Trained on:

Top 20 Cox-ranked Gene Top 40 Cox-ranked Gene Top 60 Cox-ranked Gene

Table 2: Accuracy of BRCA Models on Different Datasets & Feature Size

Gene expression dataset seems to be the most informative!

Method Comparing

Remove low-variance features

Select top cox-ranked features

Treat contact time as continuous features 😚

Treat contact time as part of response \bigcirc

SVM & Naïve Bayes 🙁

Cox model 😳

Conclusion & Future work

Conclusion

Best combination of algorithms: Select top logistic/cox-ranked features + treat contact time as part of response (in Surv objects) + Cox model

Future Work

Combine gene expression & methylation datasets to fit models

Acknowledgement

Irene(Mentor), Professor Andrew Ng, CS 229 Teaching Stuff, Professor Olivier Gevaert, Magali Claire Champion, NIH (National Institutes of Health).

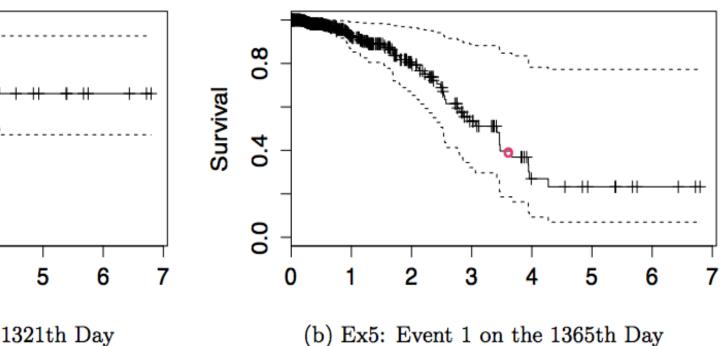


Figure 3: Survival Curves for test samples with Events 0 and 1

	Gene Expression	Copy Number	Methylation
\mathbf{nes}	83.6%	52.3%	65.3%
ıes	85.2%	54.1%	69.6%
nes	86.1%	54.8%	70.0%