
RoboCop: Crime Classification and Prediction in San Francisco
John Cherian and Mitchell Dawson

December 11, 2015

Abstract

In this paper, we employ machine learning and other statis-
tical techniques to the problems of classifying and predicting
crimes in San Francisco. Drawing upon existing research in
the field to approach these two problems, we employ Ran-
dom Forest and VAR(p) models, respectively. For the clas-
sification problem, our results across all 39 crime categories
demonstrate the difficulty of the fully-specified crime classi-
fication problem, as we achieve a maximum 39-way classifi-
cation accuracy of 31.84%. Although our results are perhaps
inappropriate for daily or weekly use in any police organiza-
tion, the time series model performs adequately at forecast-
ing crime incident averages in the coming weeks and months.
With more data and the use of a time series model already
developed by these authors for discrete time series, our re-
sults might be improved upon further.

1 Introduction

Criminal activity is inevitably a part of urban life. All city
dwellers therefore have an interest in the improvement of
our understanding of crime and its patterns. Police depart-
ments in particular could use this improved understanding to
more effectively allocate their resources and better serve their
communities. Knowing the spatial and temporal patterns of
criminal activity would allow police to deploy the right offi-
cers where and when they are most needed, and being able
to predict criminal activity would allow them to anticipate
and combat surges in crime.

The goal of our project is twofold: first, to able to clas-
sify using machine learning techniques - in particular, a Ran-
dom Forest model - the type of criminal incident (e.g. theft,
DUI, prostitution) given data about the incident’s location
and time of occurrence; and second, to able to predict in-
creases and decreases in the the rates of specific categories
of crime given past rates using a VAR(p) time series model.

2 Related Work

The literature on crime classification is highly limited when
compared to most applied machine learning problems. How-
ever, a few papers shed some light on the topic. For example,
Bogomolov’s MIT paper [1] on crime classification contained
a number of critical insights for our work. The most impor-
tant of those was the superiority of the Random Forest clas-
sifier for this problem. This assertion (which was confirmed
by empirical analyses of various off-the-shelf classifiers) was
also corroborated by another paper from Nasridinov, et.al.
[2], which advocated the use of decision trees.

Other papers helped us figure out how to construct our
feature set. Although the Wang et.al. paper is focused on
finding patterns in crime data, it suggested that location and
time data by itself would be inadequate for any serious crime

analysis problem. For instance, Wang et.al.’s pattern anal-
ysis suggests that the locations and times of burglars tends
to vary significantly over time [3]. In contrast, the Bogo-
molov paper suggested that demographic data constituted a
particularly useful set of features for his crime classification
problem [1].

On the issue of time series analysis, a couple different
papers suggested that an ARIMA family model would likely
give us reasonable, though fragile results [4][5]. However, the
papers we were able to find that were focused on forecast-
ing homicide crime rates, etc. nearly always used univariate
time series models with exogenous variables. We felt that
this was a potential area for improvement because a multi-
variate model could take correlations between different types
of crimes into account.

3 Dataset

Our dataset consists of criminal incidents drawn from the
San Francisco Police Department’s Crime Incident Report-
ing system, and was made available through a Kaggle com-
petition [6]. The dataset contains 878049 examples, each
consisting of a timestamp (date and time of day), one of 39
crime categories (what we wanted to predict), a short de-
scription of the incident, the day of week, the police district
in which the incident occurred, the resolution of the incident,
the address, the longitude, and the latitude. We ignored the
description and resolution fields as both did not appear in
the competition’s test set. We ignored the address field, as
it was difficult to work with and redundant given the police
district, longitude, and latitude fields. We also did not use
the competition’s test set, as it did not contain crime cat-
egory information. Additionally, we gathered demographic
data such as per capita income, racial composition, and me-
dian age from the 2010 American Community Survey (ACS)
to enhance our feature set. Specifically, for each criminal in-
cident in the data set we used the given coordinates to find
demographic data associated with the Census block in which
the incident occurred.

For the time series analysis, we aggregated the data on
a biweekly basis because data from every other week was
removed from the provided training set so that Kaggle could
do out-of-sample testing. We then constructed time series
covering 321 two-week periods for each crime class with a
total number of crimes exceeding 2000. See Figure 1 for an
example.

4 Methods

4.1 Classification

The primary machine learning method we employed for
classification was an ensemble method called Random
Forest. A Random Forest is defined as follows [7]:

1



Figure 1: Robbery time series

A collection of decision trees {Tb} is constructed from
B random samples drawn from the training set with
replacement. Each decision tree is grown by repeating the
following steps for each node in the tree until we reach the
limits on the size of the tree:

Randomly select m out of the p feature variables. Split
the decision tree on the variable that maximizes the Gini
impurity associated with the variable. For reference, the Gini
impurity is a measure of how homogeneous the set is. It is
defined as follows (fi is the fraction of elements labeled i in
the set):

Ig(f) =

m∑
i=1

fi(1− fi)

After the decision trees are constructed, the Random Forest
classifies the test data based on whichever class received the
most votes from the B decision trees.

4.2 Time Series

The time series model we employed was the Vector Auto-
Regressive model with lag p, or VAR(p).

Nt = ω +

p∑
j=1

AjNt−j

Nt ∈ Rk, Aj ∈ Rk×k

Using the MTS library in R[8], the time series model was fit
using least-squares, i.e. the parameters ω,Aj are chosen to
minimize (Nt − ω −

∑p
j=1AjNt−j)

2.
There are two particularly important assumptions made

by this model. The first is that the data is weakly stationary,
i.e. the following statements must hold:

E[Nt] = µ For all t

Cov(Nt, Nt−j) = Γj For all t

An Augmented Dickey-Fuller unit root test for
stationarity[9], however, reveals that no crime class time

series exhibits any significant deviations from stationarity.
The critical value observed for each categorical time series is
significant at the 5 percent level if it exceeds 2.86. Though
some do come close, none of the critical values exceed that
threshold.

Figure 2: Critical values from Dickey-Fuller tests on each
time series

It is assumed that the residuals are drawn from a
N (0, σ2) distribution. While the residuals are likely not
”truly” Normal, the average p-value of notoriously oversensi-
tive Shapiro-Wilk tests of normality performed on the resid-
uals of each time series is 0.1093, well above the 0.05 or 0.01
commonly used as a threshold for significance.

For the detrended time series model, we ”detrend” the
time series data by computing the linear least-squares fit for
each class time series and subtracting the resulting function
from the data. This is implemented in the PRACMA package
in R[10].

5 Results

5.1 Classification

5.1.1 Establishing a Baseline

For classification, we use as our accuracy measure the number
of correctly labeled examples divided by the total number of
examples. Unless specified otherwise, all test accuracies were
estimated using 6-fold cross validation.

We first ran a number of standard classification algo-
rithms on our data, including the Random Forest classifier
as recommended in the literature. The results are shown be-
low in Table 1. The training accuracies were calculated on
the entire dataset.

Table 1: Accuracies of 4 Classification Algorithms
Algorithm Training Accuracy Test Accuracy

Logistic Regression 20.00% 19.99%
SVM < 70% ≈ 25%

Naive Bayes 22.74% 22.73%
Random Forest 84.68% 29.31%

The results for Logistic Regression and Naive Bayes

2



were little better than the accuracy of the naive classifier
that always chooses the most common crime category (about
19.92%). We found that the SVM took much too long to
run on any reasonably sized subset of the data, so the ac-
curacies for SVM above are rough estimates based on very
small subsets. The results for Random Forest were somewhat
promising compared to the others, however.

5.1.2 Tuning Random Forest

Our next step was to attempt to tune the hyperparameters
of Random Forest to reduce overfitting. The hyperparame-
ter most relevant to this task was the maximum depth of the
decision trees of which the Random Forest is composed. We
systematically estimated the test accuracy for different max-
imum depths while holding the number of trees constructed
constant at 60. The value that gave the best test accuracy
was 21. Figure 3 shows how accuracy varied with changes in
maximum depth. We performed a similar search for the hy-

Figure 3: Model accuracy vs. tree depth

perparameter that determines the number of individual deci-
sion trees constructed by the Random Forest. We found that
both test and training accuracy monotonically increased as
we increased number of trees, until we reached a point where
training the model became computationally infeasible with
our available resources. We therefore chose 60, a value on the
upper end of the range for which we could train our model in
a reasonable amount of time. With these hyperparameters
set at these values, we achieved an estimated test accuracy
of 31.70% and a training accuracy of 74.70%. The confusion
matrix produced by this model appears in Figure 4.

5.1.3 Adding Demographic Data

While tuning the hyperparameters of the Random Forest
somewhat mitigated the overfitting of the model, the bias
of the model remained high. We next sought to the reduce
this bias by gathering demographic data from the U.S. Cen-
sus’ ACS and using this new data to expand our feature set.
At first, we aggregated the data by hand from a published
profile of San Francisco neighborhoods from the 2005-2009
ACS [12]. Adding these demographic features to our dataset
did nothing to enhance the accuracy of our model.

Figure 4: Confusion matrix w/o demographic data

At the poster session, we were alerted to the existence of
the U.S. Census’ ACS API [13] by the other group working
with the same San Francisco crime dataset, and we used this
to gather more accurate, fine-grained data (the specifics of
these data are detailed in the Dataset Section above). Using
these new demographic features improved the test accuracy
of our model very slightly, resulting in an estimated test ac-
curacy of 31.84%. The training accuracy dropped slightly to
71.65%.

5.1.4 Adding Higher Order Features

We next attempted to reduce the bias of our model by build-
ing higher order features - such as longitude2 or time of day×
latitude - and adding them to our feature set. Because of the
large size of our dataset and consequent long training times
with our initial set of features, we chose to only work with
the most important features as measured by the Gini impor-
tance, which is a measure of the informativeness of a feature
based on how much Gini impurity is decreased by nodes that
split on that feature [14]. Latitude, longitude, and time of
day were the 3 most important features. For a given de-
gree n, we calculated all higher order features of degree less
than or equal to n involving those three features and added
them to our feature set. Figure 5 below shows how the esti-
mated test accuracy varied with the degree n. To make this
computationally feasible, we removed the demographic data
and used a smaller (20) number of trees when estimating the
accuracies.

The variations were small, but the estimated test accu-
racy tended to decrease as n increased. The slight increase in
accuracy for n = 2, and indeed all the variations in accuracy,
may have been due to the randomness of the Random Forest,
especially since we used a smaller number of decision trees
in the forest, increasing the variance of the forest’s outputs.

5.2 Time Series

5.2.1 Motivations

The VAR(p) model is uniquely capable of finding trends
in this set of crime data. Auto-correlation function (ACF)

3



Figure 5: Test accuracy vs maximum feature degree

and cross-correlation (CCF) plots between the different cat-
egories of crimes revealed significant statistical connections
that the coefficient matrix in a multivariate time series model
like VAR(p) can capture. Figure 6 below shows two par-
ticularly informative plots. For example, in this case, the

Figure 6: ACF and CCF plots

cross-correlation function between robberies and drug crimes
might imply that an increase in drug arrests precedes a de-
crease in robberies. This and other similar correlations are
identified and exploited by the matrix coefficients of the
VAR(p) model.

5.2.2 Model Selection

Choosing p for the VAR(p) is a feature selection problem.
However, in this case, instead of using cross-validation, we fit
the model with different values of p, and calculated the model
AIC (Akaike Information Criterion) and BIC (Bayesian In-
formation Criterion). As we can in Figure 7, p = 1 appears to
be optimal. Although each of the time series passes system-

Figure 7: AIC/BIC

atic stationarity tests, it is evident that certain series exhibit
a trend over time. To account for this, we also fit the model
to detrended data (the process of detrending is described in
further detail in the Methods section).

5.2.3 Fit Results

What follows are two charts of the 20-week forecast (with a
95 percent confidence interval) of the unmodified and de-
trended model trained on ”ROBBERY” time series data.
These are Figure 8 and Figure 9, respectively. As one can
see, this model is unable to capture the week-to-week varia-
tion, but does adequately predict the underlying trend.

Figure 8: Forecast on unmodified data

In Table 2, we present the complete fit results for the original
time series and the detrended time series model. For error
data, we use normalized root-mean-square error (nRMSE)

4



Figure 9: Forecast on detrended data

from cross-validation on a sliding window of size 100. To
calculate nRMSE, the root-mean-squared-error for each time
series is normalized by the standard deviation of the observed
data.

Table 2: Time Series Errors (nRMSE)
Name Unmodified Detrended
Assault 4.6578 4.6295
Burglary 6.0505 5.9080
Disorderly Cond. 5.6276 5.6068
DUI 5.0666 4.9672
Drugs 6.3099 6.0101
Drunkenness 4.9411 4.9605
Forgery 7.7357 7.1147
Fraud 4.8329 4.8197
Kidnapping 5.0244 4.9380
Larceny 6.0363 6.2834
Missing Person 4.7970 4.7875
Non-Criminal 6.5049 6.6939
Other Offenses 5.8062 5.8096
Prostitution 5.8834 5.4976
Robbery 5.5518 5.6401
Secondary Codes 5.0086 4.8826
Sex Offenses (For.) 4.6517 4.6294
Stolen Property 5.3639 5.2323
Suspicious Occur. 5.2512 5.3832
Trespassing 4.7736 4.7754
Vandalism 5.3609 5.3498
Vehicle Theft 8.6704 8.9123
Warrants 5.1641 5.1969
Weapon Laws 4.6688 4.6602

6 Conclusion

In this paper, we used machine learning techniques to clas-
sify the type of crime that occurred given data on where and
when it occurred and time series analysis to predict future
patterns of crime given counts of past instances of crime.

Specifically, we use a Random Forest model with added de-
mographic data about the location of a crime’s occurrence
to achieve a 39-way classification accuracy of 31.84%. We
believe Random Forest is better suited to this problem than
other classification algorithms, as it makes no assumptions
about the structure of the data. This is important since our
dataset is highly noisy.

We used a VAR(p) time series model to achieve ade-
quate predictive results for many crime categories. We be-
lieve that using the MINGARCH(p, q) model, which assumes
the counts are drawn from a Poisson distribution (more ap-
propriate for crime statistics), that John developed in his
summer research would give more useful and accurate results.
However, the currently implemented version of the model is
insufficiently optimized for a larger dataset like ours. Also,
adding data from cities like Chicago would help train more
accurate, higher lag time series models.

References

[1] A. Bogomolov, et. al. Once Upon a Crime: Towards
Crime Prediction from Demographics and Mobile Data.
MIT, 2014. PDF.

[2] A. Nasridinov, S. Ihm, and Y. Park. A Decision Tree-
Based Classification Model for Crime Prediction. Infor-
mation Technology Convergence, 531-538, 2013. PDF.

[3] T. Wang, C. Rudin, D. Wagner, and R. Sevieri. Learn-
ing to Detect Patterns of Crime. European Conference on
Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases, 2013. PDF.

[4] Pepper, James V. ”Forecasting Crime: A City-level Anal-
ysis.” Understanding Crime Trends: Workshop Report
(2007): 177-209. Google Books. Web. 11 Dec. 2015.

[5] Klepinger, Daniel H., and Joseph G. Weis. ”Projecting
Crime Rates: An Age, Period, and Cohort Model Using
ARIMA Techniques.” Journal of Quantitative Criminol-
ogy 1.4 (1985): 387-416. SpringerLink. Web. 11 Dec. 2015.

[6] San Francisco Crime Classification Data. Kaggle.
https://www.kaggle.com/c/sf-crime/data.

[7] Hastie, Trevor, Robert Tibshirani, and J. H. Friedman.
The Elements of Statistical Learning: Data Mining, In-
ference, and Prediction. New York: Springer, 2009. Print.

[8] Tsay, Ruey S. Multivariate Time Series (MTS). Program
documentation. R Project. Vers. 0.33. The R Foundation,
11 Feb. 2015. Web. 11 Dec. 2015.

[9] Pfaff, Bernhard, and Matthieu Stigler. urca. Program
documentation. R Project. Vers. 1.2-8. The R Founda-
tion, 5 June 2013. Web. 11 Dec. 2015.

[10] Borchers, Hans Werner. PRACMA. Program documen-
tation. R Project. Vers. 1.8.8. The R Foundation, 28 Oct.
2015. Web. 11 Dec. 2015.

[11] Scikit-learn. Program documentation. Scikit-learn.org.
Vers. 0.17. Scikit-learn Developers, n.d. Web. 11 Dec.
2015.

[12] San Francisco Neighborhoods Socio-Economic
Profiles. American Community Survey 2005-
2009. San Francisco Planning Depart-
ment, May 2011. http://empowersf.org/wp-

5



content/uploads/2014/03/SFProfilesByNeighborhood-
SF-Planning-Dept..pdf. PDF.

[13] U.S. Census’ American Community Survey API.
http://www.census.gov/data/developers/data-sets/acs-
survey-5-year-data.html.

[14] Louppe, Gilles, et al. Understanding variable impor-
tances in forests of randomized trees. Advances in Neural
Information Processing Systems. 2013.

6


