
Recommendation System Leveraging Heterogeneity of Trust in Social
Networks

Pulkit Agrawal, Jayanth Ramesh and Agrim Gupta

I. INTRODUCTION

Recommendation systems are an integral part of many
online services ranging from content streaming websites
like Netflix to online shopping websites like Amazon. They
improve the online experience by suggesting new products
that match users’ interests and preferences. Collaborative
filtering [4] methods are the most commonly used techniques
in recommendation systems which rely on collection and
analysis of users’ preferences and predicting what users will
like based on their similarity to other users. Traditional
collaborative filtering based recommendation systems can
be categorized into three types: user based, item based and
hybrid methods. Many algorithms have been used for mea-
suring user and item similarity in recommendation systems
like the k-nearest neighbor (k-NN) approach and the Pear-
son Correlation as first implemented in [5]. Neighborhood
methods are good at detecting very localized relationships
but poor at detecting a user’s overall user preference. In
contrast, latent factor models are best at estimating the
overall preferences of a user but poor at incorporating rela-
tionships between users. Due to this complementary nature
of the two approaches, [3] integrates them to provide better
recommendations.

Trust is another aspect of recommendations in real life sce-
narios where we trust different friends for recommendations
in different categories of products. For example, we may
prefer movie recommendations from an entirely different
set of friends as compared to electronics recommendations.
We refer to this difference in trust for different categories
of recommendations as heterogeneous trust. [7] attempts to
improve on traditional methods by studying the relations
between trust and product ratings in online consumer re-
view sites. They propose an improvised matrix factorisation
technique that can be used to improve rating predictions
and estimate true strengths of trust relations at the same
time. TrustWalker [8] proposes a random walk model which
combines trust-based and item-based recommendations. This
improves the performance of recommendations even for cold
start users. Our goal in this project is to determine if we can
leverage heterogeneous trust to improve recommendations.
Our intuition is that what is true in real life should also hold
true for online communities. More specifically, given a set
of users, their ratings for products in several categories and a
social network of users, we will predict ratings for products
that have not been reviewed by a particular user. We will then
evaluate whether modeling heterogeneous trust information
improves the prediction accuracy.

II. DATA

We work with two different datasets to evaluate our
models. Our first dataset comes from the Yelp Dataset
Challenge [12] which contains business data (business id,
location, average rating, category, attributes, etc.), user data
(user id, friends, number of reviews so far, etc.) and review
data (user id, business id, review text, star rating on an
integer scale of 1−5, etc.) for six cities in the US. The
dataset is available in JSON format. We imported the data
in a Postgres database which is used as the main datastore
for our implementation. We fixed our product categories to
restaurants and shopping as they had the maximum number
or reviews amongst all categories. We narrowed down to top
6000 users based on the total number of reviews they had
in the above categories. We constructed a social network of
users using friends information in the user dataset and only
kept those users in the network who had reviewed either
restaurants or shopping businesses and who were in the list
of top 6000 users. After the data wrangling, our final dataset
had 5614 users, 27688 businesses (7598 shopping, 20090
restaurants) with 89 attributes, 247551 reviews and 45634
edges (friendships) in the user social network.

Yelp business dataset has a list of attributes for each busi-
ness which captures information about its characteristics. For
example, the most common attributes for restaurants are the
ambiance of the restaurant (classy, touristy, romantic, etc.),
the type of music played (DJ, Karaoke, jukebox, etc.) and so
on. We use these attributes to extract categorical features for
the businesses. That is, for the ambiance attribute, ‘ambiance
classy’is a feature which takes value 1 if the business has
classy ambiance and 0 otherwise. We define 89 such features
for the restaurants.

Our second dataset is Epinions dataset [6] which contains
user and ratings data for products in several categories. The
data is available in form of MATLAB .mat files. We select
movies and electronics as our two product categories because
they have the maximum number of reviews amongst all
categories. We select only those users who have reviewed
products in both the above categories. In the user dataset,
we have explicit trust relations for each user, that is, we
explicitly know which users are trusted by a given user for
recommendations. We use this data to generate a directed
graph where users are nodes and a directed edge exists
between user u and user v if u trusts v. This directed graph
will be referred to as trust network in subsequent discussion.
Our final dataset has 6874 users, 14412 products (4307
electronics, 10105 movies), 74246 reviews and 43733 edges



in the trust network (917 zero in-degree nodes, 641 zero
out-degree nodes maximum degree - 314).

The rating distribution for both the datasets is shown in
Figure I. It can be seen that the data is highly skewed towards
positive ratings (4 and 5).

Fig. 1. Rating Distribution of Yelp(left) and Epinions(right)

III. METHODS

We propose two different approaches to model hetero-
geneous trust information in recommendation systems. In
our first approach, we use k-means clustering to find com-
munities of users with similar preferences in each product
category. Thus, for each product category, we will have a
different clustering of users into communities. A new rating
is then predicted by a collaborative filtering algorithm which
computes a weighted average of ratings of all the users for
a particular product in a given user’s community.

In order to cluster the users based on user preferences,
we generate user profiles based on attributes of the busi-
nesses reviewed by them as follows. Let {b1, b2, . . . , bm}
be the m businesses reviewed by the user u with ratings
{r1, r2, . . . , rm}. Let {f1, f2, . . . , fm} be the set of 89 ×
1 binary feature vectors corresponding to the businesses.
The user profile of user u is the 89 × 1 vector

∑
j fjrj

m .
Intuitively, if a user gives high ratings to restaurants with
classy ambiance and jukebox music, these features would
have higher weights in the user profile vector, thus indicating
the preference of the user to such restaurants.

We also try to model user preferences by learning a Naive
Bayes and SVM model for each user where the attributes of
businesses reviewed by the user are used as features and a
positive label (1) is used if star rating of the business >=
threshold and a negative label (0) is used otherwise. The
parameters of the learnt model would serve as user profiles
in this scenario which we intended to use for clustering in the
community detection stage. We implemented Naive Bayes in
MATLAB while scikit learn [1] was used for SVM and k-
means. The algorithms were implemented with the defaults
from scikit, which can be found in their user guide [2]. We
tested our first approach only on Yelp dataset.

In our second approach, we estimate the strength of trust
a user places in all the users in his trust network for each
product category using category specific and general trust
models described below. Thus, for each product category,
we will have a different value of trust for all the users in

a given user’s trust network. We then use a collaborative
filtering algorithm to predict the unknown ratings (for trust
models A, B and E) as follows:

R̂u,b = µu +

∑
v Su,v(Rv,b − µv)∑

v Su,v
(1)

In the equation above and all the models that follow, Ru,b

and R̂u,b are the actual and estimated (from data) ratings
of user u to product b, µu is the average rating of user
u across all products and Su,v is the strength of trust
between users u and v computed using one of the models
described below. For models which measure the strength of
trust between users for each category separately, we define a
category specific trust strength matrix Sl

u,v , where l denotes
the product category. We also define a trust matrix Tu,v for
our network of users which takes value 1 if user u trusts
v and 0 otherwise. For all the trust models we consider,
we define Su,v and Sl

u,v to be 0 if Tu,v = 0. In addition
to these matrices, we define a product category matrix Cb,l

which takes value 1 if product b belongs to category l and 0
otherwise. We refer to our second approach as trust modeling
in the discussion that follows. Below, we describe the various
trust models we experimented with.

A. Cosine Trust

This is our simplest model for estimating the strength of
trust between two users. We assume that two users trust each
other in a particular category if they rate same products
in that category similarly. For each category l, we define
strength of trust between u and v as follows:

Sl
u,v =

∑
b Ru,bRv,bCb,l∑

b Ru,bCb,l

∑
b Rv,bCb,l

(2)

B. Recommendation Power

This measure of trust is inspired from [11]. For each
category l, the strength of trust between users u and v is
defined as:

Sl
u,v =

∑
b

Ru,bRv,bCb,l

RuRbCb,l
(3)

where Ru is sum of all ratings by user u and Rb is sum of all
ratings given to product b. We can interpret this trust measure
intuitively in terms of a two step random walk on a weighted
bipartite graph of the set of all users and the set of all
products of a particular category, where an edge exists from
a user to a product if the user rated the product. The weight
of the edge is the rating given by the user to the product.
Under these definitions, Ru,b

Ru
is the probability of traveling

from u to b and Rv,b

Rb
is the probability to traveling from b

to v in a random walk on the graph. The recommendation
power is thus the total probability of traveling from u to v.
The probability is high if u rates all the businesses which
are most liked by v (a high value of Rv,b

Rb
) highly (a high

value of Ru,b

Ru
).



C. Latent Factor+General Trust Hybrid

This model is inspired from [7]. In this model, we assume
that a user’s rating for a particular product depends partly on
his inherent preferences and partly on the ratings of users in
his trust network. The user’s preferences are modeled using a
latent factor model where we assume that users rate products
using K hidden features. For each product b, a K×1 vector
qb denotes the values of these K features for the product and
for each user u, a 1×K vector pu denotes the importance
the user places in these K factors and u’s estimated rating
on b is given by pu.qb. In order to model the influence of
the trusted users, we add a second component to this rating
estimate by averaging the ratings of all the users in a given
user’s trust network using the strength of the trust between
the users as a weight. Thus, the estimated rating, R̂u,b of a
user u for a product b is given by:

R̂u,b = αpu.qb + (1− α)
∑

v Rv,bSu,v∑
v Su,v

(4)

We constrain Su,v to lie between 0 and 1, larger value
indicating more trust. α is a hyper-parameter which de-
termines the importance of each component. In order to
learn the parameters of this model, we solve the following
optimization problem:

minP,Q,S

∑
(u,b)∈O

(Ru,b − R̂u,b)
2

+
β

2
(
∑
u

∑
k

p2u,k +
∑
b

∑
k

q2b,k)

s.t. ∀u, v Su,v ∈ [0, 1]

(5)

where O is the set of all user-product pairs for which we
know the ratings, P is the matrix formed by stacking the pu

vectors row-wise and Q is the matrix formed by stacking
the qb vectors column-wise. Here β is a regularization
parameter which doesn’t allow pu and qb to become too
large and avoids over-fitting. We initialize the parameters to
random values and solve the optimization problem by using
stochastic gradient descent with the following update rules,

pu,k ← pu,k + γ(αEu,bqb,k − βpu,k)
qb,k ← qb,k + γ(αEu,bpu,k − βqb,k)
Su,v ← Su,v + γ((1− α)

Eu,b
Rv,b

∑
v Su,v −

∑
v Rv,bSu,v

(
∑

v Su,v)2
)

(6)

γ is the learning rate and Eu,b is the estimation error (Ru,b−
R̂u,b). If the updated value of Su,v exceeds 1 or falls below
0, we set it to 1 and 0 respectively.

D. Latent Factor+Heterogeneous Trust Hybrid

Apart from some minor implementation differences, this
model is similar to the model proposed in [7]. It is same
as the previous model with the difference that instead of
learning a common trust strength Su,v between users u and
v for all products, we learn a different trust for each category

of products we have in our data set. Thus, the estimated
rating in (4) changes to the following:

R̂u,b = αpu.qb + (1− α)
∑

l

∑
v Cb,lRv,bS

l
u,v∑

l

∑
v Cb,lSl

u,v

(7)

Using this model we are able to estimate strength of trust
between users for each category separately thus allowing
us to estimate heterogeneous trust. We solve the same
optimization problem as in (5) replacing R̂ with its value
as defined in (7). Consequently, the update equations for
Sl
u,v also change as follows:

Sl
u,v ← Sl

u,v + γ((1− α)Eu,b

Cb,lRv,b

∑
v S

l
u,v −

∑
v Cb,lRv,bSu,v

(
∑

v Cb,lSl
u,v)

2
)

(8)

To reduce computation time, we implemented both our hy-
brid latent factor models in C++. All the other collaborative
filtering algorithms were implemented in MATLAB.

E. Global Trust

All the trust models we discussed so far are local trust
models in the sense that they measure how much a particular
user is trusted by another user, thus representing a local
relationship between the two users. However, we can also
have a global trust model where we assign a trust value Su

to each user u which measures the overall trustworthiness
or importance of the user u solely based on the structure
of the trust network. PageRank [10] is an ideal choice for
this global trust model because in essence it measures the
importance of each node in a network based on how many
important nodes (in our case trustworthy users) are linked to
it. We compute the PageRank of all the users (nodes) in our
trust network and assign it as the global trust value Su. We
contrast global trust measure with the local trust measures
to understand how the opinion (or trust) of locally trusted
users compares to the opinion of ‘experts’when it comes to
predicting ratings. We use Snap.py [9] for all our network
analysis including PageRank computation.

IV. EXPERIMENTS/DISCUSSION

A. K-means

For our first approach, we ran k-means algorithm for 5614
users with user profiles generated using the 89 business
attributes for restaurants. Determining the number of clusters
in a data set is a common problem in data clustering. We
determined the number of clusters using Silhouette Coeffi-
cients. Shown in Table I are the top three features for 3
sample clusters for k = 11. As we can observe, it’s difficult
to gain intuitive insight into the preferences of the users
clustered together based on these basic features. From this
table, we inferred that it is not possible to detect communities
of users with similar preferences using k-means algorithm.
Further analysis of business and their attributes revealed that
many business types were combinations of other popular
groups; for example the health group contains every business
which is categorized as spa and health. On the other hand,



TABLE I
K-MEANS : TOP FEATURES FOR SAMPLE CLUSTERS

One Two Three
Price Range 2 Good For dinner Good for Kids

Good For Groups Takes Reservations Take-out
Take out Waiter Service Good for Groups

because of crossovers such as a food court residing within a
shopping mall, the business attributes were often overlapping
and failed to capture the inherent differences in the factors
which affect ratings for these very different business types.
Hence, we decided to abandon this approach to model
heterogeneous trust.

B. Naive Bayes and SVM

Our results for learning user profiles using Naive Bayes
and SVM are shown in Table II. The values shown are aver-
age test errors across all users. Threshold in the table refers to
the rating above which all ratings are given a positive label.
In spite of our efforts to diversify the above two algorithms,
(changing the threshold or feature engineering) the results of
the algorithms were still very close to a baseline algorithm
which predicts an unknown rating as average rating of the
user. This can be attributed to the inherent skew in the rating
distribution as shown in Figure (1). We can observe that
almost 68% of the ratings are either 4 or 5. Also, we have
very few bad ratings making it difficult to predict bad ratings.
Since we could not obtain a representative model of user
profiles using either Naive Bayes and SVM we decided to
move on to our second approach.

C. Trust Modeling

For all the trust models, we split our dataset into 70%
data for training and 30% data for testing. We chose to
evaluate our trust models through the root mean square
error (RMSE) between the predicted ratings and the actual
ratings to measure accuracy. The RMSE error is computed
as follows:

RMSE =

√∑n
i (pi − ai)2

n
(9)

where pi is the predicted rating, ai is the actual rating
and n is the number of predicted ratings. To evaluate the
effect of modeling category specific trust (referred to as
heterogeneous trust in the results) on prediction accuracy,
we compute cosine trust and recommendation power for all
the categories considered together, that is, we assume that all
the products belong to the same category and compute the
trust measures as defined above. These category independent
trust models are referred to as general trust models. For the
general trust models, we compute the within category RMSE
values along with the overall RMSE values. That is, after
using the general trust model to predict ratings, we compute
the RMSE error separately for restaurants and shopping in
Yelp dataset and movies and electronics in Epinions dataset.
For RMSE computation, we only consider those test data
points for which the prediction component due to averaging
from trusted users is non-zero. For Yelp dataset, we did

Fig. 2. Heterogeneous Trust learned from Electronics (left) and Movies
(right)

not have explicit data indicating which users are trusted by
a given user. Hence, we experimented with two different
approaches. In the first approach, we assumed that a user
trusts all the other users, (referred as AllTrust) and in the
second approach, we assumed that a user only trusts his
friends (direct connections in the social network, referred
as SocialTrust).

The results for trust modeling using cosine trust and
recommendation power are summarized in Table III for Yelp
dataset and Table IV for Epinions dataset.

Both the heterogeneous AllTrust models improve over gen-
eral trust models in the restaurant category for Yelp dataset.
However, the performance in shopping category declines.
One of the reasons for this behavior could be that we have
fewer shopping businesses as compared to restaurants in our
trust. In addition, many shopping places (malls) are also
tagged as restaurants and user preferences/trust in restaurants
should be similar to shopping to some extent. Hence, when
we limit ourselves to shopping category for trust estimation,
we lose the similarity information provided by the restaurant
part of the user rating vector.

The SocialTrust heterogeneous models do not preform
better than general trust models on Yelp dataset. This could
mean that social connections alone are not a good indication
of trust when it comes to recommendations. Also, most of
the friends of active users on Yelp are themselves not active.
Hence, lack of enough correlation between active users and
their friends (due to their inactivity) makes it unreliable to
treat social connections as trusted connections.

Epinions dataset doesn’t suffer from the above problems
with Yelp dataset. Movies and electronics, unlike shopping
and restaurant, are mutually exclusive and uncorrelated cat-
egories. Also, in Epinions dataset, we explicitly know every
user’s trusted users (who are also active reviewers on Epin-
ions). Hence, both the heterogeneous trust models improve
over general trust models, corroborating our hypothesis.

TABLE II
SVM AND NAIVE BAYES ON YELP DATASET

Model Threshold = 3 Threshold = 4
Naive Bayes 0.3609 0.1548

SVM 0.3425 0.1524



TABLE III
TRUST MODELING ON YELP DATASET

Model Restaurant Shopping
AllTrust Models

Cosine (General) 0.9098 0.8604
Cosine (Heterogeneous) 0.8166 0.9133

Recommendation Power (General) 0.9080 0.8500
Recommendation Power (Heterogeneous) 0.8269 0.9124

SocialTrust Models
Cosine (General) 0.7315 0.8543

Cosine (Heterogeneous) 0.7498 0.8602
Recommendation Power (General) 0.7324 0.8582

Recommendation Power (Heterogeneous) 0.7288 0.8632

TABLE IV
TRUST MODELING ON EPINIONS DATASET

Model Movies Electronics
Cosine (General) 0.8310 1.0735

Cosine (Heterogeneous) 0.8053 0.9088
Recommendation Power (General) 0.8138 1.6027

Recommendation Power (Heterogeneous) 0.7911 0.9726

D. Latent Factor Hybrid Models

For the latent factor+trust hybrid models, we divide the
dataset into 70% data for training, 15% data for validation
and 15% data for test. The learning rate γ was set to 0.01.
Lower values of γ slowed down the training and higher
values of γ led to divergence. We selected the values of α,
β and K which led to the least RMSE on the validation
set. This led to a value of β = 0.01 and K = 20. In
Figure (3), we show the validation analysis for α ranging
between 0.1 to 0.9 for β = 0.01 and K = 20. Similar to the
other general trust models, we computed within the category
RMSE values for the latent factor and general trust hybrid
model. Figure (2) shows the strengths of trust learnt using
latent factor+heterogeneous trust model for user A. The edge
widths correspond to trust strength. It can be seen that while
I is a highly trusted user for movies recommendations, he
is least trusted for electronics.

The minimum validation error is obtained for α = 0.8,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

alpha

R
M

S
E

 

 

Electronics(H)

Electronics

Movies(H)

Movies

Total(H)

Total

Total(α = 1)

Electronics (α = 1 )

Movies (α = 1)

Fig. 3. Validation Error Analysis of Latent Factor Hybrid Models

β = 0.01 and K = 20. Total RMSE on test dataset
for these values of hyper-parameters is 1.2024. For values
of α between 0.7 − 0.9, both the trust models perform
better than pure latent factor models (dotted lines on the
graph). Moreover, for too small values of α, the hybrid
models perform poorer than pure latent factor models. This
shows that user ratings are affected both by inherent user
preferences and ratings given by trusted users. However,
the heterogeneous trust hybrid doesn’t improve considerably
over the general trust hybrid. One possible explanation for
this could be that the ratings distribution is highly skewed
towards 4 and 5. Thus, for a given user, the strengths of
trust might vary over movies and electronics. But all the
trusted users might rate many products as either 4 or 5
making it difficult to improve the performance by modeling
heterogeneous trust beyond a point.

E. Global Trust

Finally, we compare the performance of global trust mea-
sure (as defined in Methods section) with local trust measures
(cosine and recommendation power) with respect to rating
prediction on Epinions dataset. The total RMSE of rating
prediction using global trust is 0.9876 whereas the local trust
measures achieve an RMSE of 0.8590 (cosine) and 0.8435
(recommendation power) on the same test dataset. Thus, it
looks like local trust connections affect user ratings more
than ratings from experts. However, a more thorough analysis
is required to make this claim with certainty.

V. CONCLUSIONS AND FUTURE WORK

In this project, we analysed the effect of incorporating het-
erogeneity in trust relations among users in a social network
on traditional recommendation systems. We observed that
heterogeneous trust improves performance when compared
to general trust for recommendation power and cosine trust,
when we have explicit information about user-user trust and
uncorrelated product categories. The hybrid model combin-
ing latent and heterogeneous trust gives best performance
for α = 0.8 on the Epinions dataset. We could not achieve
similar improvements on the Yelp dataset because we didn’t
have explicit information about trust between users and most
of the reviews on Yelp were for restaurants making it difficult
to find an uncorrelated category with sufficient number of
reviews.

In this project, we only considered directly connected
users as trusted users. However, it is possible to propagate
the trust from directly connected users to other connected
users using random walks on the user network. It would
be interesting to explore these trust propagation algorithms.
Another possible line of future work could be extending the
work for multiple business categories on a larger dataset to
obtain more concrete results.

REFERENCES

[1] Pedregosa, Fabian, et al. ”Scikit-learn: Machine learning in Python.”
The Journal of Machine Learning Research 12 (2011): 2825-2830.

[2] scikit learn user guide [Online]. Available:
http://scikitlearn.org/stable/user guide.html



[3] Koren, Yehuda. ”Factorization meets the neighborhood: a multifaceted
collaborative filtering model.” Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2008.

[4] Breese, John S., David Heckerman, and Carl Kadie. ”Empirical anal-
ysis of predictive algorithms for collaborative filtering.” Proceedings
of the Fourteenth conference on Uncertainty in artificial intelligence.
Morgan Kaufmann Publishers Inc., 1998.

[5] Allen, Robert B. ”User models: theory, method, and practice.” Inter-
national Journal of man-machine Studies 32.5 (1990): 511-543.

[6] http://www.public.asu.edu/jtang20/datasetcode/truststudy.htm
[7] Au Yeung, Ching-man, and Tomoharu Iwata. ”Strength of social

influence in trust networks in product review sites.” Proceedings of the
fourth ACM international conference on Web search and data mining.
ACM, 2011.

[8] Jamali, Mohsen, and Martin Ester. ”Trustwalker: a random walk
model for combining trust-based and item-based recommendation.”
Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2009.

[9] Leskovec, Jure, and Rok Sosic. ”SNAP: A general purpose network
analysis and graph mining library in C++.” (2014).

[10] https://en.wikipedia.org/wiki/PageRank
[11] Zhou, Tao, et al. ”Bipartite network projection and personal recom-

mendation.” Physical Review E 76.4 (2007): 046115.
[12] http://www.yelp.com/dataset


