People trust different sets of social connections for different types of recommendations. Can we model this heterogeneous trust to improve collaborative filtering algorithms?

Data

- **Yelp**
 - 5614 users, 27688 (7598-S, 20900-R) businesses, 247551 reviews (sparsity-0.16%), 45634 edges (1712 zero degree nodes, maximum degree - 568), 88 attributes

- **Epinions**
 - 6874 users, 14142 (4307-E, 10105-M) products, 74246 (57059-M, 17187-E) reviews (sparsity-0.07%), 43733 edges (917 zero indegree nodes, 641 zero outdegree nodes maximum degree - 314)

Idea

Modeling Heterogeneous Trust

Cosine Trust

Similar connections are more trusted

\[S'_{ij} = \begin{cases} \frac{\sum R_i R_j C_{ij}}{\sum R_i C_o \sum R_j C_o} & \text{if } T_{ij} \neq 0 \\ 0 & \text{if } T_{ij} = 0 \end{cases} \]

- **Recommendation Power**

 Two step random walk on weighted bipartite graph of users and products

 \[S_{ij} = \begin{cases} \frac{1}{R_i} \sum_{R_j} C_{ij} & \text{if } T_{ij} \neq 0 \\ 0 & \text{if } T_{ij} = 0 \end{cases} \]

 \(R_b \) - Sum of all ratings received by b, \(R_i \) - Sum of all ratings given by i

Global Trust

Social network analysis to estimate trust using centrality measures of nodes - PageRank, Closeness Centrality

\[\hat{R}_{a,b} = \frac{\sum R_{a,t} T_t}{\sum T_t} \]

Latent+Trust

Use SGD to learn trust strengths and latent factors for prediction

\[
\min_{P,Q} \sum_{R_{a,b} > 0} (R_{a,b} - \alpha p_a q_b \quad - (1 - \alpha) \left(\sum_{\|T_a\|=1} S_{a,b} R_{a,b} \right)^2 + \beta \left(\|P\|^2 + \|Q\|^2 \right)
\]

\(P_{u \times K} \) and \(Q_{K \times b} \) - latent factors of users and products, \(p_u \) - u'th row of P and \(q_b \) - b'th column of Q

Latent+Heterogeneous Trust

Use SGD to learn heterogeneous trust strengths and latent factors for prediction

\[
\min_{P,Q} \sum_{R_{a,b} > 0} (R_{a,b} - \alpha p_a q_b \quad - (1 - \alpha) \left(\sum_{\|T_a\|=1} S_{a,b} R_{a,b} C_{b,l} \right)^2 + \beta \left(\|P\|^2 + \|Q\|^2 \right)
\]

\(S'_{a,b} \) - trust strength for category l, \(C_{b,l} \) - whether product b belongs to category l

Results

- **Figure 1**: Yelp and Epinions Rating Distribution
- **Figure 2**: Recommendation Power using Bipartite Graph
- **Figure 3**: Heterogeneous trust learnt for movies and electronics
- **Figure 4**: Hybrid Trust Models on Epinions