Recognizing web traces of various web services

Phase 1 Identifying loaded website

Features:
Each network capture is represented as a 1514-dimensional vector x:
x_i: number of packets of length i

Distribution of packet length depends on website loaded:

Dataset:

100 training examples for each of the following websites: Google, Wikipedia, Bing, Youtube, Amazon, Facebook, Yahoo

Method:

Naive Bayes multiclass classifier with multinomial event model

Testing:

5-fold Cross Validation on this dataset yields average error:

0.14 %

Phase 2 Locating the user action

Precision-Recall graph for Google auto-completion

Goal: finding the traces corresponding to auto-completion usage

Training set:

- 200 traces of auto-completion usage
- 20,000 packets of standard web traffic (no auto-completion)

Test set:

 200,000 packets of "mixed" web traffic (random websites + auto-completion)

Algorithm: Naive Bayes with multinomial event model. Sliding window to consider n (=20) packets at a time

Probability of being an auto-completion trace (p(y)) can vary in order to change precision and recall.

Precision-Recall graph for Bing auto-completion

Conclusion: Excellent performance on differentiating between 7 of the most popular websites

Conclusion : low precision rate, especially for Bing. Could be improved by further filtering the result using the classifier derived in step 1.