Decision impact in MOBA games

Problem
- Many factors in determining game outcomes
- How to quantify impact of the strategic choices?

Data
- 12,000 silver-league (mid-level) online matches
- For each match, 10 players, pick 1 randomly
- Game features:
 - Allied / Enemy Champions: 1-hot encoded
 - Player Item purchases: 1-hot
 - Player Gold, XP at 5 and 10 min: cumulative
 - Meant to capture “game state”
- Data format:

<table>
<thead>
<tr>
<th>champion 1 is ally</th>
<th>champion 1 is opponent</th>
<th>item 2 purchased</th>
<th>gold @ 5 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>863</td>
</tr>
</tbody>
</table>

Results
- Item choice as a whole has subtle effects
 - Logistic, SVM w/ Kernels, Decision trees overfit and do not benefit from decision data once game state data is included
 - Game is “well-balanced” by designers
- When we narrow the focus to specific items and control for correlations we begin to see modest causal effects.

Decision Impact in MOBA games

Causal Modeling
- Correlation ≠ Causation:
 - Winning teams buy expensive items
 - Expensive items may not help much in general
- OLS assumes: X (item choice) orthogonal to e
- Game state Z affects both X and Y
 - e is correlated with X (choice of items is endogenous)
 - Biased estimates for effect X has on Y

Early Game Decision Making
- Increase in information => Increase in accuracy
- Item Impact = (Model 3 Acc.) - (Model 2 Acc.)

Early Game Decision Making

Causal Modeling
- Propensity Score Matching:
 - Propensity score: p(x=X|Z)
 - Each sample is paired with counterfactual with similar propensity
 - In paired data, Z is no longer correlated with X
 - Distribution of propensities are similar across treatment groups {x=1, x=0} after PSM:

Linear Classifiers
- Logistic Regression: L2 regularization
- SVM: Linear, Poly-Deg2, RBF kernels. Linear wins

Propensity Score Matching
- In paired data, Z is no longer correlated with X
 - Distribution of propensities are similar across treatment groups {x=1, x=0} after PSM:

Decision Trees
- Hypothesis: Interdependence between features
 - Some items context-specific
 - Game is “well-balanced” by designers
- When we narrow the focus to specific items and control for correlations we begin to see modest causal effects.

Results
- Item choice as a whole has subtle effects
 - Logistic, SVM w/ Kernels, Decision trees overfit and do not benefit from decision data once game state data is included
 - Game is “well-balanced” by designers
- When we narrow the focus to specific items and control for correlations we begin to see modest causal effects.

Early Gold + XP (GS)

Early Item Purchases (IP)

Model 1:
Win ~ C

Model 2:
Win ~ C + GS

Model 3:
Win ~ C + GS + IP

Item Impact:
- Not noticeable, even with kernel
 - Predictive Delta = -.003

Random Forest Overfit:
- Best at Depth 1

Depth 1 AdaBoost Trees:
- No better than Logistic

Logistic Regression:
- L2 regularization

SVM:
- Linear, Poly-Deg2, RBF kernels. Linear wins

Propensity Score:
- p(x=X|Z)
- Each sample is paired with counterfactual with similar propensity
- In paired data, Z is no longer correlated with X
- Distribution of propensities are similar across treatment groups {x=1, x=0} after PSM:

Hypothesis:
- Interdependence between features
 - Some items context-specific
- Game is “well-balanced” by designers
- When we narrow the focus to specific items and control for correlations we begin to see modest causal effects.

Results
- Item choice as a whole has subtle effects
 - Logistic, SVM w/ Kernels, Decision trees overfit and do not benefit from decision data once game state data is included
 - Game is “well-balanced” by designers
- When we narrow the focus to specific items and control for correlations we begin to see modest causal effects.

Early Game Decision Making
- Increase in information => Increase in accuracy
- Item Impact = (Model 3 Acc.) - (Model 2 Acc.)

Early Gold + XP (GS)

Early Item Purchases (IP)

Model 1:
Win ~ C

Model 2:
Win ~ C + GS

Model 3:
Win ~ C + GS + IP

Item Impact:
- Not noticeable, even with kernel
 - Predictive Delta = -.003

Random Forest Overfit:
- Best at Depth 1

Depth 1 AdaBoost Trees:
- No better than Logistic

Logistic Regression:
- L2 regularization

SVM:
- Linear, Poly-Deg2, RBF kernels. Linear wins

Propensity Score:
- p(x=X|Z)
- Each sample is paired with counterfactual with similar propensity
- In paired data, Z is no longer correlated with X
- Distribution of propensities are similar across treatment groups {x=1, x=0} after PSM: