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We develop a generic model of voting behavior in the House of Representatives (election cycles
2004-2014) without the use of individual vote histories, allowing for generalization to future Con-
gresses with new members. We find that these Representatives nearly always vote in line with their
political party’s collective decision, and that greater than 95% prediction accuracy is possible when
the minority party’s collective vote can be perfectly determined. Using logistic regression with party
information for bill sponsors, cosponsors, and voters, and further information about how controver-
sial a bill is from a list of topics relevant to it achieves a prediction accuracy of 88%, comparable to
state-of-the-art methods. More complex models which try to account for party-specific preferences

by topic showed no improvement.

INTRODUCTION

Voting on bills in the House of Representatives is one
of the primary steps required for creation of a new federal
law, but what influences an individual Representative’s
vote is not always transparent. High-profile bills such
as the Patient Protection and Affordable Care Act [1]
highlight partisanship in the voting process, suggesting
that political party is a primary driver of voting behav-
ior, particularly in recent years. Moreover, movements
such as “Occupy Wall Street” [2] have brought the idea
of a wealthy few buying a disproportionate amount of in-
fluence into the minds of Americans, raising the question
of how influential election campaign contributions and
lobbying efforts are in affecting a Representative’s votes.
This work attempts to both accurately predict individ-
ual votes in the House of Representatives and elucidate
the primary influences on voting behavior. In addition,
it does so in a way that is easy to programmatically eval-
uate and to generalize to a future Congress with new
members who may not have a voting history to train on.

PRIOR WORK

Much of the past work in this area involves training
a separate classifier for each Representative, and hence
requires voting history information, making it difficult
to generalize to future Congresses. Some attempts have
been made to determine whether a bill will survive being
referred to a congressional committee, using both un-
supervised clustering of bills by textual content [3] and
logistic regression on features like sponsor party, com-
mittee chairman party, and state of origin [4]. There is
ample evidence that a Representative’s party is relevant
for predicting voting behavior [5, 6], as one might expect.
The evidence for campaign finance data being relevant is
mixed, with greater influence seen for votes on special
interest issues, where contributions from interest groups
are most likely to be salient and accountability to con-
stituents may be lower [7]. There is more evidence that

lobbying efforts can affect voting results [8]. However,
gathering lobbying information can be costly (such as
through directly reaching out to Representatives), lim-
ited (only the number of lobbying appeals for a given
bill is public), and unreliable (some lobbying is done off-
the-books), making such data outside the scope of this
work.

A meta-analysis of older studies suggests that the best
models reach roughly 90% accuracy in predicting indi-
vidual votes, though all methods reviewed rely on using
individual past voting records [6]. A more recent model
takes a baseline ideology score for each Representative
(on the conservative-liberal spectrum) and adjusts it ac-
cording to past voting record on topics relevant to the
bill, as determined by a programmatic study of the most
common associated keywords (assigned to bills by an out-
side group) [9].

This work is unique (to our knowledge) in that it does
not use the past voting records of Representatives, in-
stead creating a single generic model which can be ap-
plied to any future Representative, and hence which can
be used to glean information about general voting be-
havior patterns. State of the art models seem to cap out
at roughly 90% prediction accuracy for a wide class of
models, even with voting records, so we hope to achieve
roughly similar performance.

DATASET CHARACTERIZATION

This work focuses on votes in the House of Representa-
tives for Congresses 108-113 (election cycles 2004-2014).
Congresses 108-112 were used as training data, while
Congress 113 was set aside for testing. Each example
consists of a bill-Representative pair, with the Represen-
tative’s vote on that bill as the result we wish to predict.
We restricted the data to roll call votes, the results of
which are publicly available. Further, votes were only
considered if they concerned the passage of House Bills
(which, if also passed in the Senate, would become law
and are hence of most interest to the general public). If



there were multiple votes for the passage of one bill, we
considered only the first such vote. For simplicity, we
excluded abstentions and votes by members of a third
party, so that both the vote result and each Representa-
tive’s political party are binary.

Several different input feature lists were considered,
and can be separated into features associated with Rep-
resentatives and with bills. For Representatives, the
features considered were the Representative’s political
party and campaign contributions, obtained from opense-
crets.org as bulk text files containing a list of all contribu-
tions from both political action committees (PACs) and
individuals for each election cycle. Each contribution is
assigned to a “sector” identifying the donor’s industry or
ideology. More information on all thirteen sectors (such
as Agriculture, Health, and Finance) can be found on the
OpenSecrets website [10, 11]. We processed the contri-
bution files to obtain the total contributions to each Rep-
resentative for each sector. For bills, the features consid-
ered were the bills’s sponsor (party and campaign contri-
butions), the number of cosponsors from each party, the
congressional committees the bill was referred to, and a
list of “tags” describing the topics related to the bill, each
no more than a few words. These bill features, as well
as the roll call votes for each bill, were obtained from
govtrack.us [12]. The result for each example is the vote
(“yes” or “no”). The vote of each of the 435 Representa-
tives on ~300 bills provides ~130,000 examples for each
Congress, totaling to ~780,000.

In order to better understand the structure of cam-
paign contributions, we tried several ways of clustering
the campaign contribution data by sector for Represen-
tatives from all Congresses. For this step, we normalized
the campaign contributions for each Representative to
sum to 1, since otherwise the clustering was dominated
by a few Representatives with very large contributions
(such as John Kerry, when running for President). How-
ever, the results were not very informative, aside from
indicating that the three largest sectors in terms of cam-
paign finance are Finance, Health, and Labor Unions in
that order. Because of this, we chose instead to visu-
alize the campaign finance data using principal compo-
nent analysis, or PCA. This algorithm (and all others
described, unless otherwise mentioned) was implemented
using the Python machine learning package [13].

PCA reduces the dimensionality of the data by finding
the linear combinations of the initial feature axes along
which the variance is maximized. This is done by finding

m
the eigenvectors of the matrix ) zWzOT where 2 is
i=1
the feature vector for example zz and m is the total num-
ber of examples, and choosing the k eigenvectors with the
largest eigenvalues, where k is the desired number of re-
duced dimensions. To maximize the variance of the data
while still allowing it to be easily visualized, we chose
k=3 (Fig. 1).

FIG. 1. Campaign finance data, reduced to three axes using
PCA, with Republicans in red and Democrats in blue. The
fraction of the total variance of the data explained by each
axis is given in the axis label. Note that the two parties
are fairly clearly separated by the second PCA axis, which is
dominated by contributions from labor unions.

These three axes accounted for 65% of the total vari-
ance of the campaign finance data. The PCA results
suggest that Representatives do not naturally separate
into distinct clusters, which could be related to the lack
of insights from clustering. However, they do show a
clear separation by party according to the second PCA
axis, which largely (anti-)aligned with contributions from
labor unions. This accords with the expectation that
labor unions contribute primarily to Democrats, while
other sectors are less ideologically aligned with a partic-
ular party. The principal axis was largely aligned with
the Candidate Committees sector as well as the Ideolog-
ical/Single Issue PACs sector, suggesting that much of
the variance may come from separating out high-profile
politicians who get a substantial fraction of their cam-
paign funds from dedicated election committees. The
third principal axis was primarily aligned with the Fi-
nance sector, though it also was a significant component
of the other axes. Hence, while both Finance and Health
contribute substantially, the Finance sector seems to be
more politicized, while Representatives across the board
receive donations from the Health sector.

Significant effort was also devoted to understanding
the average voting behavior of Representatives, with par-
ticular attention paid to their political party affiliations.
An analysis of bill votes for a sample Congress is given in
Fig. 2. For all Congresses in this dataset, the majority
party sponsors most of the bills and its members vote
“yes” nearly unanimously on most bills. In contrast, mi-
nority party members vote “yes” nearly unanimously on
bills it sponsored, but votes bimodally for bills sponsored
by the opposition. This is true regardless of whether the
majority party is Republican or Democrat. This can be
distilled into two main features of this dataset: 1) Rep-
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FIG. 2. Scatter plot of bill votes by party for Congress 108,
with each bill colored according to the party of the bill’s spon-
sor. The results are projected onto a histogram on the mi-
nority party vote axis, again with bars colored by the sponsor

party. The majority party sponsors most of the bills and votes

“yes” mnearly unanimously, while the minority party votes

“yes” nearly unanimously on bills it sponsored, but votes bi-
modally for bills sponsored by the opposition.

resentatives largely vote according to party (herd men-
tality), and 2) bills can be separated into a large class
of uncontroversial bills (which pass with an overwhelm-
ing margin) and the remainder which are controversial.
In fact, roughly 80% of votes in this dataset were “yes”
votes, indicating that the result classes are quite unbal-
anced, and further establishing a baseline accuracy of
80% with which to compare the performance of any pre-
diction method.

This is further illustrated in Fig. 3. This demonstrates
that most members of the minority party vote the same
way as their party (as determined by the majority of
votes) greater than 90% of the time, with an average
agreement of about 95%. Hence, since Representatives
cast roughly equal numbers of votes, very high prediction
accuracy (>95%) can be achieved by determining how
the minority party will vote on any given bill, without
any further distinguishing information about any Repre-
sentative than their party.

ANALYSIS

Given the characterization of this dataset, most of our
prediction efforts went toward determining whether a
bill would be “controversial,” meaning that the minor-
ity party as a whole would vote against it. Our primary
algorithm of choice for doing this was logistic regression.
Logistic regression consists of finding a coefficient vector
0 of the same length as the input feature vectors z(¥,

and returning the quantity hg(z(®) = ﬁ as the
0Tz

probability that example z(¥) will be a “yes” vote. The
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FIG. 3. Histogram of the fraction of votes which agree with
the collective vote of the party, by minority party Represen-
tative.

coefficient vector 6 is determined so as to maximize the
likelihood of 6 given the training data, using gradient de-
scent. Specifically, the gradient descent rule for updating
6 is given by 0 := 6 + « (y(i) — h@(x(i))) = where « is
a parameter (the “learning rate”) which determines the
speed of convergence. This step is repeated (either for
one z( at a time, or with a sum over all (¥ in the
training set) until 6 converges to within some tolerance.

Initial tests of this method used the following features:

1. Voter and sponsor party
2. Features from 1 plus bill features (described below)

3. Features from 2 plus campaign contributions for
both voter and sponsor

Originally, party was encoded as 0 for Republicans and
1 for Democrats, but we found that the generalization
error for training on Congresses 108-112 and testing on
Congress 113 was worse than when training and testing
on any single training Congress, which we interpreted
to be due to changes to the party in power from one
Congress to the next. When the party was instead en-
coded as 0 for the minority party and 1 for the majority,
this discrepancy went away, so this encoding was used for
all results shown, unless otherwise noted. The bill fea-
tures include the number of cosponsors from the majority
and minority parties, as well as “vote fractions” for the
bill’s tags and congressional committees. For any given
tag (committee), the vote fraction is calculated by taking
the fraction of all training votes on bills containing that
tag (referred to that committee) which were “yes” votes.
Hence, this is an indicator of how generically uncontro-
versial (to either party) bills with that tag (referred to
that committee) are. This attempts to capture the intu-
ition that there are many generically uncontroversial bills
related to topics such as naming a new post office, and



that some tags (or committees) could identify such a bill.
Note that while most tags present in bills for Congress
113 (test data) were present in the training data, none
of the actual votes or bills were, so that there is no way
for the algorithm to cheat by knowing in advance how a
given bill will be voted on.

Given the list of tags (committees) for a bill, the fea-
ture used as input to logistic regression was the simple
mean of the vote fraction for all the tags (committees)
present; hence, there are only two additional features in-
volving vote fractions. Inspection of the tag vote frac-
tions by eye suggests that they do capture generic uncon-
troversiality: tags with low vote fractions include contro-
versial topics such as terminal illness and the draft, while
tags with high vote fractions include topics all Represen-
tatives are likely to agree on such as nature, radioactivity,
and Nazism. Campaign contributions were not normal-
ized by individual (as they were for PCA), but were left
as absolute contributions, in thousands of dollars, from
each of the thirteen funding sectors.

The results of performing logistic regression on these
feature subsets are shown in Fig. 4. We choose as our
performance metric the overall accuracy of classification,
as there is no particular reason to penalize false negatives
over false positives, though we also report the precision-
recall curve for “yes” votes for completeness, where pre-
cision is the fraction of predicted “yes” votes which are
correct predictions, and recall is the fraction of true “yes”
votes which are correct predictions. Note that due to
the high precision for much of the graph, the area un-
der the curve is near 1 for all classifiers, making it less
sensitive as a metric than accuracy. The results indicate
that inclusion of the bill features does improve the accu-
racy, from 82% to 88%, comparable to methods of other
researchers. However, such a comparison is at best sug-
gestive, as the datasets are different (it seems plausible
that more recent polarization of the House would make
voting behavior more easily predicted, for example).

The further inclusion of campaign finance data
smoothed out the curves, but did not provide any sub-
stantial improvement, suggesting that any relevant in-
formation it might provide was already captured by the
other features. This agrees with the expectation (from
dataset characterization) that a Representative’s party is
the only distinguishing feature needed to predict her or
his voting behavior. In addition, the training and test
errors were very similar in all cases (88.1% training accu-
racy versus 87.8% test accuracy for the best-performing
classifier, i.e. using the bill features). This is to be ex-
pected, as the models are all fairly simple (<50 features)
and the dataset is reasonably large (nearly 1 million ex-
amples).

Because the models above did not show evidence
of overfitting, we chose to include additional features
that might better capture the content of a bill, beyond
whether it is generically controversial to both parties. To
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FIG. 4. Above: accuracy of the logistic regression classifiers
with different input features versus threshold for predicting
a “yes” vote. Below: precision-recall curve for the logistic
regression classifiers.

do this, we included as features the presence of tags, en-
coded as 0 when the relevant tag was absent, and 1 when
present. Since there are over 3000 unique tags in this
dataset, too many to include as features, we reduced the
tags to the 100 most useful, as determined by their mu-
tual information with the vote outcomes from the train-
ing dataset. The mutual information between tag t; and
the vote result y (both binary) is given by

(tey)= >, > »

t;e{0,1} ye{0,1}

p(ti,y)

(t.3) log 5520

Including these top 100 tags (or fewer) in the logistic
regression model as additional features, however, did not
improve the accuracy. Switching the party encoding back
to Republicans and Democrats (rather than majority and
minority), to try and better account for party-specific
differences, did not improve the model.

Another attempt to determine whether a bill is contro-



versial or not was to use the Naive Bayes method on the
tags: for tag t;, the probability of the tag being present in
a controversial (uncontroversial) bill, ¢§ (¢¥), is given by
the number of controversial (uncontroversial) bills con-
taining that tag divided by the total number of controver-
sial (uncontroversial) bills. This was modified slightly by
the Laplace smoothing method to account for tags which
appeared very rarely, by adding 1 to the controversial
(uncontroversial) count for each tag and also adding the
total number of unique tags to the denominator (number
of controversial or uncontroversial bills). The probability
of a future bill with tag list T" being controversial is then

calculated as:
u u 71
Lo
Qsc tiGT (bi‘

where ¢° (¢") is the fraction of all bills which are contro-
versial (uncontroversial). In this context, a bill was deter-
mined to be controversial if >50% of minority party Rep-
resentatives who cast a vote on it voted “no.” Any tag
which was not present in the training dataset was ignored
for this calculation (a small fraction of total tags). To
try and better determine party preferences (since some
topics may be more likely to be voted down by Repub-
licans than Democrats or vice-versa), the training was
done only on Republican-majority Congresses (108, 109,
and 112), and tested on Congress 113, which also had a
Republican majority. This method achieved 75.9% accu-
racy in predicting which bills would be controversial in
Congress 113. However, including the Naive Bayes prob-
ability of being controversial as an additional input to
logistic regression did not improve the model’s accuracy.
This suggests that all of the information in the Naive
Bayes output which might help classify bills as contro-
versial was already present in the tag vote fractions.

As a final step, the same features were used to train a
support vector machine (SVM), with the thought that
its increased complexity might reduce the bias of our
model. Because the SVM method relies on defining a
distance metric between examples, and the inputs are
measured in different units, we first scaled the features
so that each feature from the training data had a mean
of 0 and a variance of 1, then applied the same scaling to
the testing data. The SVM algorithm works by finding a
coefficient vector w (and bias term b) so as to maximize
the minimum distance (over all examples) to the decision
boundary defined by w” z+b; hence, its goal is to choose a
decision boundary using the examples nearest to the true
boundary between classes (“support vectors”) as a guide.
Because real data is rarely perfectly separable by such a
linear decision boundary, the constraints are loosened to
allow examples to be on the wrong side of the decision
boundary, with a corresponding penalty in the maximiza-
tion term determined by the regularization parameter C'
(larger values of C' mean a higher penalty for such mis-

classified examples). This problem can be mapped onto
the following constrained maximization problem:

U 1 & P .
max W(a) = Zai —5 Z oy Dy 2O T2 0
i=1

4,j=1

m
st.0<; <C,i=1,...,m and Zaiy(i) =0
i=1
The results of this approach, with different feature sub-
sets and with C' = 1, are essentially identical to the logis-
tic regression results, with the highest accuracy of 88%
achieved with the simple list of bill features; adding the
top 100 tags or the Naive Bayes controversiality proba-
bility did not improve the classifier, and in the case of
the raw tags, led to overfitting (a training accuracy of
90% was achieved, while the testing accuracy was 85%).
Adjustments to C' did not improve upon the best result
of 88% testing accuracy.

CONCLUSIONS

Campaign contributions to members of the House of
Representatives were analyzed via PCA, finding that
the Health sector gave to Representatives across the
board, Labor Unions donated primarily to Democrats,
and contributions from Finance and Candidate Commit-
tees showed the highest variation independent of party;
hence, donations from these last two sectors are ideal
for distinguishing between Representatives. However, it
was determined that votes are primarily the result of a
collective party decision, so individual features (including
campaign finance data) have limited value. Furthermore,
many bills pass with a high margin, and members of the
majority party almost always vote “yes” (as they sponsor
the bills being considered), so most of the improvement
in accuracy over the 80% baseline (from predicting all
“yes” votes) comes from correctly predicting which bills
will be controversial to the minority party.

Using logistic regression with party information for bill
sponsors, cosponsors, and voters, and further information
about the bill’s controversiality from its tags improves the
accuracy to 88%, comparable to the accuracy of state-of-
the-art methods which use Representatives’ vote histo-
ries (albeit on a different dataset, making such direct
comparison difficult). More complex models which try
to account for party-specific preferences showed no im-
provement. This technique could be improved by a more
complete topical model (sorting bills into broader cate-
gories) or the addition of lobbying information. It would
also be interesting to learn more about the 5% of Rep-
resentatives who do not vote with their party, by looking
more into individual features, such as by analyzing out-
liers in the campaign contribution data.

The authors acknowledge Nick Sher for useful discus-
sions.
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