Master Chef: Cuisine Classification and Recipe Generation

Juhi Naik, Vinaya Polamreddi

Classification

Data

- Distribution of Data
 - SouthEastAsian
 - WestEuropean
 - SouthAsian
 - EasternEuropean
 - Japanese
 - LatinAmerican
 - NorthAmerican
 - EasternAsian
 - African
 - EastAsian

~6500 - Kaggle competition

Datasets:
- Dataset 1: Full dataset divided 70:30
- Dataset 2: 70:30 after removing North American recipes
- Dataset 3: 2200 training examples and 550 test examples randomly sampled
- Dataset 4: 200 training examples and 50 test examples each taken from each of the 11 cuisines

Results

Comparison of train errors based on datasets

Comparison of test errors based on datasets

Accuracy by Cuisine

Similarity between predictions of models

Conclusion

- Most methods have similar performance on our data
- Stratifying the data to have a uniform data set decreased our performance the most
- Most methods were able to classify ~70% of our data correctly. ~7-11% of our data wasn't able to classified accurately by any our methods.

Generation

Data

- ~63000 recipes : scraped from AllRecipes.com

Models for Generation

- Each Recipe represented by a list of ingredients and instructions.
- Each Action represented as a (Verb, Ingrid) pair.

Generate a set of ingredients

Examples:
1. maple syrup
2. honey
3. cinnamon
4. banana
5. sugar
6. almond

Generate a sequence of instructions given a set of ingredients

Example:
- 1. preheat butter
- 2. mix cinnamon
- 3. mix salt
- 4. mix garlic
- 5. stir onion
- 6. stir potato
- 7. cook corn syrup

Conclusions

- Most methods have similar performance on our data
- Stratifying the data to have a uniform data set decreased our performance the most
- Most methods were able to classify ~70% of our data correctly. ~7-11% of our data wasn't able to classified accurately by any our methods.