Rossmann Store Sales

David Beam and Mark Schramm

December 2015

1 Introduction

The objective of this project is to forecast sales in
euros at 1115 stores owned by Rossmann, a Eu-
ropean pharmaceutical company. The input to our
algorithm is a feature vector (discussed in section
3) of a single day of data for that store. We tried
using a number of algorithms, but mainly gradi-
ent boosting, to output the predicted total sales
in euros for the given store that day. Rossmann
provides a massive 1.1 million example data set
as part of a sponsored (by Rossmann) contest to
see who can best predict their sales. Over 3500
groups have entered the contest, with the best
group achieving 8.9% root mean squared error.
This project is also being used for CS 221, and
use different parts of the project for that class
that includes K-means to group the data and an
Markov decision process (MDP) to model store
output over a period of time. For this class, our al-
gorithm focused around regressive algorithms and
decision-tree based regression algorithms like gra-
dient boosting. As a baseline algorithm for both
classes we used support vector regression (SVR)
over an unprocessed feature set. However, to im-
prove performance we used an augmented feature
set. We also experimented with linear regression
and neural nets with less success.

2 Related Work

1) Exploratory Analysis Rossman - posted by
Christian Thiele on the Kaggle competition board.
This resource useful insights for augmenting our
features such as using the log of the distance be-
tween stores and competitors instead of the actual
distance.

2) Introduction to Boosted Trees - Tianqi Chen
University of Washington We used gradient boost-
ing because many competitions used and endorsed
xgboost, a python library for decision-tree based

gradient boosting. This link gave a useful expla-
nation of how gradient boosting works:

3) Microsoft Time Series Algorithm - MSDN
Another alternate approaching to sales data is Mi-
crosoft Time Series which is based on a core algo-
rithm called autoregressive integrated moving av-
erage (ARIMA). One component of ARIMA is the
autoregressive model, which models a predicted
value X(t) as a linear combination of values at pre-
vious times, for example A(1)*X(t-1) + A(2)*X(t-
2) plus a random error term. The other component
of ARIMA is the moving average model, which
only depends on past errors (errors before time t).
4) Different Approaches for Sales Time Series
Forecasting - Bohdan Pavlyshenko This post on
Kaggle compared the performance of linear re-
gression with regularization, ARIMA, conditional
inference trees, and gradient boosting. From this
resource, we ultimately determined that no single
approach behaves the best on all stores, convinced
us to focus our efforts on algorithms that assume
the data points are i.i.d, instead of using time se-
ries algorithms, which would be harded to work
with and optimize.

5) We also gained a lot of insight from the 229
poster session, as there were several groups work-
ing on the Rossmann competition. This included
insights such the importance of parameter tuning
and an idea to train on individual stores.

3 Datasets and Features

Store Day Of Week Date
Customers* Open Promo
State Holiday | School Holiday

Table 1: Features: *Customer data was provided,
and was the most useful feature, however it is im-
portant to be able to predict sales without using
customer data, as future customer numbers are un-
known, while some initial trials used customers as
a fetaure final results and tuning were done with-
out it as discussed below.

The full dataset provided by Rossmann in-
cludes approximately 1.1 million training exam-
ples consisting of the features shown in Figure 1.
There was also meta-data for each store, some en-
tries were incomplete, however every entry listed
the store type, assortment (inventory) and distance

to closest competitor (two stores were missing
this, so we filled them in with a large value to ap-
proximate a very far competition distance). These
three meta-data features were used as well. The
open feature was a special case, if the store was
closed, sales were always 0, we did not train on
any examples where open was 0 and we always
predicted O sales when we saw this at test time.
Some data pre-processing was necessary. posi-
tive entries for the holiday fields, as well as the
store type were given as ’a’, ’b’, ’c’, or ’d’, we
converted these values to numbers 1-4, for com-
patibility with our algorithms. The date field was
mapped to the day of the year, 1-365, and the year
was turned into a separate feature (not used in our
final experiments as it ended up slightly hurting
performance). Lastly, competition distance was
converted to the log distance as recommended by
Exploratory Analysis Rossmann, and this helped
performance.

For almost all training and testing, we did not
use the full 1.1 million point data set, but a smaller
set of 65,000 training examples, 21,000 develop-
ment samples, and 21,000 test samples, all ran-
domly selected once, then saved into excel for
consistency. We employed simple cross valida-
tion, tuning on the dev set, then finally testing on
the test set. For some final testing, we did ran
on the full 1.1 million entry dataset, here we ran-
domly split off 80% of the data to use for training
and the remaining 20% for testing. No dev set was
used as there was no tuning done at this point, and
in general we saw very little variance between dev
and test results, most likely due to the similarity of
the data.

4 Methods

In total we tried four algorithms, we used SVR as a
baseline, gradient boosting as our main algorithm,
and also tried linear regression and a feed forward
neural net. The last two algorithms showed poor
initial results and were abandoned, all four how-
ever, will be discussed in some detail below.

41 SVR

SVR is just the regression version SVM’s which
we studied in class. After looking at visualizations
of the sales over time on Kaggle, and determining
the effects of the features on sales, we opted to

restrict ourselves to a linear SVR kernel because
the features seemed only to relate linearly to sales.
The linear program of our SVR was therefore min-
imize:

!
1 *
§Hw||2 +CZ(Ci+Ci) s.t

i=1

yi— <w,x; > —b<e+(;

<w,x; >4+b—y <e+ GG, ¢G>0

4.2 Feed Forward Neural Net

We briefly tried using a Feed Forward Neural Net.
Neural nets used a series of, weight matrices as
well as a nonlinear function (we settled on tanh)
to take an input feature vector and output a pre-
diction, in our case a regression sales value. The
feed forward hypothesis function of a neural net
with weight matrices U and W, an input vector z,
and two bias vector b; by would be calculated as
follows (note this is based off an assignment from
cs224).

po(xD) = hgy(U(tanh(Wx + by) + ba)

Where hg) is the sigmoid function. We can then
use the least squared loss function.

> (po(a?) =)
i=1

And minimize this loss with SGD to optimize all
of our parameters. We were not able to get good
results though using neural nets, despite trying a
few different hyper parameter values, our best rms
was a disappointing 2880 or 49.9% with customer
data included. This is likely due to the low dimen-
sionality of the data set, neural nets our generally
at their best with large input vectors (50 or 100 at
least) to tune and influence weight matrices. Neu-
ral nets had not really been connected to this prob-
lem at all, but it was still interesting to try a deep
learning approach.

J(0) =

DN | =

4.3 Linear regression

We also briefly tried linear regression to see how it
compared to SVR, despite running quickly it per-
formed worse than SVR on initial runs, so we de-
cide to stick with boosting as the main algorithm.
Regression played a small part in our project and
was studied in class so it is only discussed very

briefly. It uses the same least squares cost func-
tion as neural nets, with the difference being rather
than using the hypothesis function py(z(?), we
just use the sigmoid function.

4.4 Gradient Boosting

Our primary algorithm was gradient boosting.
Gradient boosting is a very powerful supervised
learning algorithm that uses regression trees. Each
regression tree splits the data at each non-leaf node
based on a constraint on a feature (i.e. distance-
ToCompetitor ; 1000). The leaf node value of a
data point determines its score, and given multi-
ple regression trees, a data point is predicted by
summing the scores of the leaf node it belongs to
across all of the regression trees. The functions
generated by these regression trees are actually
step functions the jump where the data splits. As-
suming we have K trees, the generic model for the
regression tree is

K

gi =Y frlwi)

k=1
and the objective function we wish to minimize is

K

i=1 k=1

where [is our loss function and €2 is the measure
of function complexity. Gradient regression uses
square loss for [but a number of different func-
tion complexity measures that typically incorpo-
rate the number of leaves and the L1 norm of the
leaf scores/weights Gradient boosting, or additive
training, expresses a function in terms of a sum of
the previously attempted functions. So

t
y = Z fr(x:)
k=1

Substituting into the objective function, using
square loss, using a Taylor series expansion, and
using a standard definition of function complex-
ity, our new objective function becomes

T
1
Z[ijji(Hj + Nw;?] +~T

Jj=1

Where G; = >0 and g =

Oye-nl(yi, =1 That is the sum over all training
instances i contained in leaf j of a tree. The ws are
the weights of each leaf and) is some constant of
the L1 norm of the weights. The optimal weight

of each leaf and resulting objective value are

w;* = — g2y and Obj = — 3 Y1, F25 +AT.
In practice, the tree is grown greedily using the
change in the objective function value based on a
split: h?LZ + CGr’ _ CutGr® _ . The terms
LA T Hr+tA ~ Hp+HgrX

here are the score of the left child, right child,
score if we don’t split, and complexity cost of an
additional leaf, respectively. We can do a linear
scan over a sorted instance, calculating the above
expression each time to greedily determine the
optimal split over our data.

A key step to improving the performance of
boosting was hyper parameter tuning. To do this
we used a greedy version of sklearn’s gird search,
which given a grid of hyper-parameter options
exhaustively tries each combination to see which
performs best. To save a massive amount of run
time, we only tuned one or two parameters at a
time, greedily assumed that this would be the best
value, and then moved on to the next parame-
ter, adding in our newly tuned values. Of course
the greedy method does not work perfectly, and
some parameters were re-tuned downstream, for
example initial tuning led us to a large learn rate
of .9 however this was later decreased to .2. De-
spite having to occasionally re-tune greedy tuning
saved dozens of hours of run time and still reduced
our rms by almost 300%/

5 Results and Analysis
5.1 General Results

Most of our development was done working with
gradient boosting, as previously mentioned, our
boosting trials will be thoroughly discussed in sec-
tion 5.2. That said there were still some general
trends and results discovered from the other al-
gorithms. In general our baseline SVR, out per-
formed linear regression and neural nets in all
head to head trials. It is entirely possible that
we could have gotten results close to or as good
as those of boosting had we decided to focus on
SVR, however boosting’s much faster run time

(28 minutes (SVR) vs 7 seconds (un-tuned GB)
10min (tuned)) and slightly better preliminary re-
sults made it a more desirable choice. The com-
parison of performances with and without cus-
tomer data showed just how useful of a feature
it was. its inclusion with no other changes dou-
bled the performance of SVR and Boosting (as
seen in Table 2). While, again, we couldn’t use
it on final trials as future customer data is of
course unknown, it was a good indicator of how
well an algorithm would work. For example the
fact that we could not get a good prediction with
neural nets using customer data told us that its
prospects for final testing without customer data
were not high. Figure 1, reinforces the importance
of customer data by offering a visualisation show-
ing the correlation between customer data, pro-
motions, and sales (we chose the customer and
promotions features for this graph as they were
shown to be the two best by the sklearn’s select
k-best feature selector). The sales data is more
or less linear with respect to customers, while an
active promotion increases the slope of the line.
The customer feature was so influential that we
even tried first predicting the number of customers
for a given day, then including that as a feature to
predict sales, however this gave us slightly worse
boosting performance (again shown in Table 2).
Dataset size was one variable that had varying im-
pacts on different algorithms, regression for ex-
ample converged quickly, and showed the same
results for a 65k set as the full 880k set. Boost-
ing however showed a 3.6 % performance gain

when increasing the amount of data (we did not
run the full data on SVR due to the long run time,
and neural nets showed no improvement moving
from 1k train to 4k train so we stopped there).

Data visualization

Tsoooo

40000
30000
0

20000§

110000

1000,
100y,
Cus 9009 0.4
toro0400 :
omers °8008300_g 0.0 02

Figure 1: Data Visualisation: A plot of customers
and promotions vs sales

Paramter Tuning's Effect

2500

2000

1500

rms

1000

500

0 1 2 3 4 5
parameters tuned

Figure 2: Tuning: this graph shows the effect
of hyper-parameter tuning on rms using the 65k
dataset

Algortihm Train Data Size | Test Data Size | Cust Used | % rms
SVR with meta 65k 21k Yes 22.1
SVR no meta 65k 21k No 46.6
Nueral Net 4k 1k Yes 49.9
Linear Regression 65k 21k Yes 23.6
Linear Regression 880k 220k Yes 23.7
Boosting no tuning or meta 65k 21k Yes 22.1
Boosting no tuning 65k 21k Yes 17.3
Boosting no tuning 65k 21k No 39.7
Boosting no tuning 65k 21k predicted 41.6
Boosting tuned store by store 65k 21k No 82.5
Boosting tuned 65k 21k No 15.9
Boosting tuned 880k 220k No 12.3

Table 2: Full Results, test error is reported, test and dev error never varied by more than 3 %. Boosting

always used store meta data unless otherwise specified. % rms was calculated by taking total rms and

dividing by the average sale amount, 5771 euros

5.2 Boosting

We spent the most time focusing on optimizing
our boosting. Early on (even when working with
SVR) we saw that the addition of store meta-data
as features improved performance, and indeed we
saw a 5% rms gain when we added this. Other
small gains came from the aforementioned data
set expansion, as well as taking the log of the
competition distance rather than the full distance
(this was used in tuned trials, and on its own pro-
vided roughly a 3% increase). By far the biggest
gain however, came from hyper parameter tuning,
once we started tuning we got our rms down from
41.6 % to 1.5% and finally 12.3%. Using the grid
search method discussed in section 4.4 we set-
tled on a learn rate of .2, max recursion depth of
5, on minimum split of 1, and 4000 estimators.
The effects of tuning can be visualized in Figure
2, it is important to note that this graph is some-
what biased. The tuning gain versus parameters
tuned trade off was more of a function of some
parameters leading to much larger gains than oth-
ers. Had we made this graph in a different order
the data would look somewhat different, however
it serves its purpose in showing that initially we
saw large performance gains that tapered off as we
got further into tuning. We found that the more
estimators we added the longer the run time and
the better the performance, as far as we know this
trend would continue for quite some time. We ul-
timately stopped pushing the number estimators
higher due not only to the increasing run time, but
more importantly a fear of over fitting to the train
data. While our validation still showed low vari-
ance, the train dev and test data are all very sim-
ilar as they were taken from the same 1.1 million
data set, and while this large represents 3 years

7 Bibliography

of data, meaning its should contain a large vari-
ety on its own, its still not guaranteed to main-
tain low variance on unseen future results. One
failed experiment was an attempt to train an indi-
vidual boosting model for each store, instead of
one large one. Other work on this problem as well
as the poster session implied that this should im-
prove performance; however, we had a large error
using un-tuned values(about 50%) and a stagger-
ing 82.5% error using values tuned for one large
booster. This high amount of error leads us to be-
lieve there may have been some subtle implemen-
tation error in our code, however no bug was ap-
parent upon inspection. Regardless we were still
happy with our final 12.3% number and probably
could have pushed it even lower if we had contin-
ued increasing the number of estimators.

6 Conclusion

We were able to achieve 12.3% rms error using
gradient boosting, our main algorithm, to pre-
dict Rossmann sales without using customer data.
Boosting worked very well for this data set, most
likely due to the fact that this data is extremely
dense, which is known to be ideal for boosting.
We also got decent baseline results using SVR,
given next to no tuning was done for this algo-
rithm, given more time we could explore SVR in
more depth. Other future work would include con-
tinuing to push the upper bound on the number of
estimators used on the data, and trying to get bet-
ter results using the individual store method. We
could also more finely tune hyper parameters us-
ing a more algorithmic method such as Bayesian
optimization, rather than the brutish grid search.
Any of these paths could push our error down to
current state-of-the-art levels of 9% rms error.

1) ”Microsoft Time Series Algorithm.” Microsoft Time Series Algorithm. Microsoft Developer Net-

work, June 2015. Web. 11 Dec. 2015.

2) Chen, Tiangi. ’Introduction to Boosted Trees.” (2014): n. pag.
Https://homes.cs.washington.edu/ tqchen/pdf/BoostedTree.pdf. University of Washington, 22 Oct. 2014.

Web. 09 Dec. 2015.

3) Thiele, Christian. “Dashboard.” Rossmann Store Sales. Kaggle, 8 Oct. 2015. Web. 11 Dec.
2015.

4) From sklearn we used LinearRegression, SVR, and GradientBoostingRegressor. We used pybrain
for our forward-feed neural net.

5) Manning, Christopher. Neural Networks for Named Entity Recognition. Stanford University, n.d.
Web. 11 Dec. 2015.

6)Pavlyshenko, Bohdan. "Rossmann Store Sales.” Different Approaches for Sales Time Series Fore-
casting -. Kaggle, 30 Nov. 2015. Web. 09 Dec. 2015.

