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Abstract Model 2 : Greedy Logistic Regression Model 3 : Sliding logistic regression Model 4 : Comparison of classifiers

In this project, we aim at trying to predict stock prices of the Eurostoxx50
index using machine learning techniques applied to bank analyst recommen-
dations. Based on those predictions, we create a long-short trading strategy.
We then back-test this strategy and use different validation tools to improve the

e New point of view : predict Eurostoxx e Addressing model 2 flaws: including sliding training set window. e New classifiers : Random Forests and SVM

e More features and correlation taken into account. ¢ Including moving average to incorporate trend following and

model. We investigate two types of logistic regression models which achieve o . mean reversion features Long Short strategies
a 43% and 33% error rate respectively. We then build strategies using sliding e Training size : 90%. B d Label - le window _size = 100 and nb_day = 80
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e Pulling bank analysts ratings and target prices for each stock com- . ages. — RF
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e Data from January 2000 to June 2015. Optimization of parameters 0al
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e Assumption : independent increments and same behavior. ® = 0 OVEr last year. 08 R 0N T B B B T R e Long-short vs long only strategies: long-only performs less well
e Stocks modeled as a single response vector. than the long-short strategy for all classifier which validates the abil-

e Training size : 75% ity of the strategies to profit even in difficult market situations.

e Different classifiers in different scenarios: SVM works better to

e Features and Label : Y = 1;StockReturn > () : - : - -
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X — [ StockReturny, AnalystTargetReturny, RatingReturny, el — Strat _ : than Fhe loglstlc regression and rand(?m forests over longer.and less
, - volatile periods. Indeed the latter deliver returns more consistently.
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Prpected et 0.85 ! - - - - 10 W Py M e Applying machine learning techniques to the stock market seems

I 1 : 3 Tﬂ' ? g ! 8 E to be performing well. Suggesting that further study in the domain,
Conclusion: e Lol ] n particul?r on different and.maybe less liquid data sets could lead
to the finding of good strategies.
e Error rate : 43% 06 | e The inclusion of bank analysts recommendations which are based
e Could work great (Nokia) but could lose a lot (Carrefour) on fundamental economic valuations allows for the strategies to
g

e Too strong assumption : no industry specific components and in- o | incorporate a different and more fundamental approach than ex-
dependent stocks. ploiting only the time series data. Again, further study on the inclu-

o Trainine set inadequate : usine information from the vear 2003 o Remark " c00 1000 1500 2000 2500 3000 3500 4000 sion of fundamental parameters in algorithmic trading strategies
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predict 2014. e Dependent on training size



