
Object Classification using RGB-D data for Vision Aids
Apples and Oranges

Kyle Chiang, Anthony Pelot, and Trisha Lian

I. INTRODUCTION
With the increased availability of cheap and reliable depth

sensors, imaging systems can now use depth information to
better detect and locate objects in a scene. New augmented
reality (AR) systems, such as the Microsoft HoloLens, are
now mounting depth sensors on their glasses to improve
functionality.

The motivation behind our project is to perform object
recognition using RGB-D (color and depth) data for a vision
aid being developed at Stanford. This vision aid consists of a
pair of AR goggles with an Asus Xtion depth sensor mounted
on top of it. We would like to use the RGB-D data from this
sensor to train a classifier that can recognize household items
from a database. Information on the classified object can
then be relayed to a user through the vision aid. This system
has the potential to help the visually impaired navigate and
perform everyday tasks more efficiently.

Our training data consists of an RGB-D data set from a
team at the University of Washington. We used two different
3D descriptors to extract feature vectors that describe
each frame of RGB-D data. The input features to our
algorithm are these descriptor vectors. We then use SVM
to train a classifier that can output the predicted class
of new RGB-D images. Using test data we collected with
our own experimental setup, we evaluated the effectiveness
of our classifier.

The best cross validation results gave 89% accuracy while
using the SHOTCOLOR descriptors and a subset of tested
items. Experimental results from this model had a prediction
accuracy of 83% when presented with testing data obtained
from our experimental setup.

II. RELATED WORK

Object detection and recognition using RGB-D data is an
ongoing research area in computer vision. In particular, there
are a wide range of 3D descriptors that can be used as feature
vectors[1]. For example, Lai et al. used a combination of
SPIN descriptors on point clouds and SIFT descriptors on
corresponding RGB images to train three classifiers (linear
support vector machine (LinSVM), gaussian kernel support
vector machine (kSVM), and random forest (RF)) using
RGB-D data [2]. Their classifiers, however, were only tested
on their own data set and not on data collected from dif-
ferent experimental setups. In addition, their feature vectors
required extensive pre-processing of descriptors.

Instead of choosing standard descriptors, Bo et al. intro-
duced a collection of novel features that utilize the depth
map, the RGB image, and their corresponding point cloud

[3]. These features capture specific aspects such as shape,
edges, or relative object size. These features performed better
then standard descriptors when trained with LinSVM. In
a different paper, the same authors used sparse coding to
learn hierarchical feature representations from raw RGB-D
data [4]. In addition to object recognition, classifiers using
RGB-D data have also been used for other computer vision
tasks. For example, Goswami et al. use HOG descriptors
and entropy maps extracted from RGB-D data to train an
RF classifier to recognize faces.

III. DATASET AND FEATURES

A. Training Set

We use a dataset collected by a team at the University of
Washington for research on RGB-D data [2]. This dataset
contains 300 household objects grouped into 51 categories.
The dataset was recorded using a Microsoft Kinect while the
objects were rotated on a turn table to obtain multiple angle
views. The camera was also mounted at different heights
to obtain viewpoints of different angles from the horizon.
Objects are segmented from the background and presented as
textured point clouds. Each viewpoint and its corresponding
point cloud acts as a single training example.

We trained on a subset of the 300 object categories in
this set. Each object category contains data from a variety
of different objects. For example, in the apple category there
are different types of apples (e.g. Red, Green, Fiji). In total,
we have around 3000 training examples per category (600
view points from 4-6 different objects in each category).

Figure 1 shows a small example of items contained in the
training dataset.

Fig. 1. Example images from our training data.

B. Testing Set

In order to test our classifier with completely new inputs,
we collected our own RGB-D data. First, we mounted a
calibrated Asus Xtion RGB-D sensor on a raised platform
overlooking a table. Next, we performed a calibration step
to obtain average depth and RGB images of the static
background. We then placed objects in front of the sensor
and captured RGB-D images. The object was automatically
segmented from the image by selecting points that differ
significantly from the static background. Multiple objects
were separated into individual point clouds using connected
component approaches. The depth and RGB information was
then projected back out into 3D space to form a textured
point cloud. This data matches the type of input we obtain
from our training data set.

We collected textured point cloud data with our own
objects from each category. We rotated the object by hand to
obtain different viewpoints of each object. Like the training
data, each viewpoint and its corresponding point cloud was a
single testing example. In total, we had around 10-15 views
of each of the 5 objects.

Figure 2 shows a few examples of our testing data gathered
from our experimental setup. Figure 3 shows one textured
point cloud of a mug from the testing data.

Fig. 2. Examples of several objects and different viewpoints from our test
set.

C. 3D Descriptors

In order to represent our textured point clouds with a
feature vector, we use 3D descriptors. 3D descriptors reduce
a point cloud into a vector or histogram that captures the key
aspects of the object. Although there are many available 3D
descriptors, we focus on two: Viewpoint Feature Histograms
(VFH) [5] and Signature of Histograms of Orientations with
Color (SHOTCOLOR) [6]. Descriptors are calculated and
manipulated using the Point Cloud Library (PCL) [7].

VFH captures both the viewpoint information of the point
cloud as well as its geometry. It does the former by first
calculating a vector between the viewpoint and the point
cloud’s centroid. It then bins the angle between this vector
and the normals of each point into a histogram. To capture

Fig. 3. Example of a textured point cloud from our testing set.

the geometry, it calculates a Fast Point Feature Histogram
(FPFH) descriptor using the object’s centroid. FPFH pairs
neighboring points and bins each pair’s euclidean distance
and angular difference between their normals. This results in
4 histograms: 1 for the viewpoint, 3 for each angle in FPFH,
and 1 more for the distance in FPFH. The final feature vector
contains 308 values.

While VFH captures both geometry and viewpoint, it does
not utilize the RGB data. SHOTCOLOR is a descriptor that
incorporates both RGB texture and geometry. A spherical
support structure is constructed around the point of interest
(keypoint) and divided into 32 volumes. For each volume,
the angle between the keypoint and each point is binned
into a histogram. A similar procedure is performed for the
texture information; color is converted into a vector (using
the CIElab color space) and the angle between the keypoint
and each point is also binned into a histogram. This results
in a feature vector with 1353 values.

VFH is a global descriptor and therefore encodes the
entire 3D geometry of a point cloud. On the other hand,
SHOTCOLOR is a local descriptor and only describes the
geometry around a single point. In order convert our local
descriptor into a global one for our implementation, the
centroid of each point cloud was found and the maximum
distance between the centroid and each point was calculated.
We then use the centroid as a single keypoint and set the
radius of the descriptor to the be the maximum distance.
Both descriptors are invariant to scale and SHOTCOLOR is
also invariant to rotation.

We expect SHOTCOLOR to perform more accurately in
situations where object geometry is similar but color is not.
For example, apples and oranges are both spherical, but the
former tends to be red (and occasionally green) while the
latter is always orange. Despite the lack of color, VFH’s
inclusion of viewpoints might be advantageous when an
object has unique geometry when viewed from a single angle.
In addition, our method of converting a local descriptor to a
global one for SHOTCOLOR is not standard and may reduce
the effectiveness of the descriptor.

IV. METHODS

A. SVM

To train our machine learning algorithm, we decided to
use a multi-class SVM. A binary SVM classifier works by
establishing a separating hyperplane, or decision boundary,
within the n-dimensional representation of n features. This
hyperplane is located such that it creates a constant margin
between positive and negative training examples. This hyper-
plane can then be recreated for prediction purposes by only
considering those training examples that exist exactly along
the margin for the hyperplane. These training examples are
called the support vectors. The optimal margin classifier can
be solved via the following equation:

min
γ,w,b

1

2
||w||2

s.t. y(i)(wTx(i) + b) ≥ 1, i = 1, ...,m

This constrained optimization problem can be solved by
utilizing the Lagrangian dual problem where the primal
consists of the form:

min
w
θP(w) = min

w
max

α,β:αi≥0
L(w,α, β)

The dual can be similarly formed as:

max
α,β:αi≥0

θD(α, β) = max
α,β:αi≥0

min
w
L(w,α, β)

By finding w∗, α∗, and β∗ that satisfy the Karush-Kuhn-
Tucker (KKT) conditions, we find the solution to this dual
optimization problem and the support vectors are found to be
any training point in which the KKT condition of gi(w∗) ≤ 0
is actively constrained.

Additional complexity can be introduced by utilizing
kernels that map features into a higher dimensional feature
space. This allows much more flexibility in the fitting of the
features, especially when the dimensionality of the feature
set is low or irregular enough that a linear classifier cannot
capture the complexity present in the training data.

To expand the binary classification to a multi-classification
system, two approaches can be used. In the first, called
One vs All, each class is compared to all the other classes,
resulting in n classifiers for n classes. During prediction, the
classifier with the greatest margin is determined to be the cor-
rect class. The second method, called One vs One, the classes
are divided into pairs resulting in n(n−1)

2 total classifiers for
n classes. This method can be much more computationally
intensive, but tends to give better performance.

After obtaining descriptors of the training set, we imple-
mented a multi-class SVM network using LIBSVM, which
uses One vs One and supports a variety of kernels [8]. Ker-
nels considered were the radix (RBF) kernel, a polynomial
kernel, the sigmoid kernel, and a basic linear classification.
Of the various kernels, the RBF kernel was determined to be
the best to start with since it performs very similarly to the
sigmoid kernel which can be invalid under certain paramaters
and has fewer hyperparameters than a polynomial kernel [9].

However, when investigating the usage of RBF kernels, the
support vectors would take hours to compute. Furthermore,
with a training set of around 20,000 data points of dimension
1353, we would obtain over 1000 support vectors. The high
number of support vectors and poor performance on cross
validation data suggested that we were overfitting the data.
To fix this problem, we switched to a linear classifier using
LIBLINEAR, which uses One vs All, and the performance
on cross validation data improved significantly [10].

B. Cross Validation

Because of the way our dataset was collected, there is a lot
of structure and correlation between the various datapoints.
For this reason, naively setting aside the last 10% of our data
or a random 10% of our data for cross validation would not
accurately represent the quality of our classifier. Because our
data was comprised of a small number of objects with many
views of each object, we implemented a version of k-fold
holdout cross validation by holding out all views of each
item. This way we can be assured that the cross validation
data is independent of the training data.

Looking at the visual of class predictions for the 2 different
descriptors we used in Figure 4 and of the confusion matrices
in Figures 5 and 6 for SHOTCOLOR and VFH respectively,
we confirmed our initial hypothesis that the additional color
data captured by the SHOTCOLOR descriptor would give us
better prediction results than that using the VFH descriptors.

Fig. 4. Visualization of VFH and SHOTCOLOR classification. Each row
is a point of training data and the color represents the class in which that
training point was classified as in the holdout cross validation

V. LAB TESTS

A. Testing Model

After training an SVM model on the training set, we
proceeded to validate the quality of the model using our
own test data captured in the lab. Unfortunately, we could
not obtain all the objects in our original training set and
our camera was unable to pick up objects with too many
transparent or shiny surfaces like the water bottle and soda

Fig. 5. Visualization of confusion matrix for cross validation when using
SHOTCOLOR

Fig. 6. Visualization of confusion matrix for cross validation when using
VFH

can. For this reason, the model we used for our test set was
smaller than that used to select the linear kernel for the SVM,
classifying 5 objects instead of 9.

B. Results

Testing on our own data, we indeed showed that the
SHOTCOLOR descriptor for training resulted in more ac-
curate predictions compared to VFH. A visualization of the
test predictions corresponding to each of these descriptors
is shown in figure 7. Figures 8 and 9 show the confusion
matrices for categorizing our test data. Overall experimental
accuracy was 78% for VFH and 83% for SHOTCOLOR.

While the difference in accuracy between the two is not
as drastic as the difference in the cross validation (78% to
83% in experimental tests versus 77% to 89% in cross-
validation tests), it can be seen that SHOTCOLOR does
a much better job categorizing globular fruit than VFH.
In the testing set, VFH simply categorized nearly all the
globular fruit as oranges, whereas SHOTCOLOR was able

to differentiate them correctly with about a 60% to 70%
accuracy. This difference can be improved if the categories
were more finely split among colors. With green apples and
red apples all in the training set under the same category,
color doesn’t help separate apples and oranges as well as if
red apples and green apples were categorized as separate
classes. Unfortunately doing this would give poor results
because there are too few independent red and green apple
data points in the training set.

Fig. 7. Visualization of classification of test data

Fig. 8. Visualization of confusion matrix for test data when using
SHOTCOLOR

VI. FUTURE WORK

In order to accurately identify a larger amount of house-
hold items, a much larger training set must be used. This can
be done by generating additional data in the same way that
the training set currently used was generated. Another option
is to investigate the usage of widely available 3D models of
objects. To use standard 3D models, they would first need
to be converted to 3D point clouds before they could be

Fig. 9. Visualization of confusion matrix for test data when using VFH

converted to the appropriate feature set with 3D descriptors.
One important difference in this process would be that a
single model would represent a 360 degree view of the object
and thousands of training examples per object for each view
would no longer be required. This precludes utilizing view
based descriptors such as VFH and may introduce additional
complexities that need to be investigated. If successful, this
would allow a training set to be compiled using freely
available databases of 3D models.

Another important work to be addressed in the future is
recognition within a scene. Currently, due to background
subtraction, only the object introduced is considered for
recognition. In a real-time system, calibration for background
subtraction of each individual object in the room is not
feasible. Additional algorithms must be introduced that will
allow recognition of objects within the entire scene in order
for true real-time operation to be possible.

VII. CONCLUSION

This investigation sought to implement a machine learning
algorithm to accurately recognize household objects for the
purpose of assisting the visually impaired using an AR
system. A training set of 3D point clouds for household items
was converted to appropriate features using 3D descriptors
in PCL. Both VFH and SHOTCOLOR 3D descriptors were
tested for comparison with and without considering color. A
model based on a linear SVM multi-classifier was trained,
cross-validated, and tested against data collected in our own
experimental setup for each item. Using VFH, which does
not consider color, cross-validation results were 77% and ex-
perimental results were 78% accuracy. Using SHOTCOLOR,
which takes advantage of RGB data, cross-validation results
were 89% and experimental results were 83% accuracy.

REFERENCES

[1] Alexandre, Lus A. “3D descriptors for object and category recognition:
a comparative evaluation.” Workshop on Color-Depth Camera Fusion
in Robotics at the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vilamoura, Portugal. Vol. 1. No. 2. 2012.

[2] Lai, Kevin, et al. “A large-scale hierarchical multi-view rgb-d object
dataset.” Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE, 2011.

[3] Bo, Liefeng, Xiaofeng Ren, and Dieter Fox. “Depth kernel descriptors
for object recognition.” Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on. IEEE, 2011.

[4] Bo, Liefeng, Xiaofeng Ren, and Dieter Fox. “Unsupervised feature
learning for RGB-D based object recognition.” Experimental Robotics.
Springer International Publishing, 2013.

[5] Rusu, Radu Bogdan, et al. “Fast 3d recognition and pose using the
viewpoint feature histogram.” Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on. IEEE, 2010.

[6] Tombari, Federico, Samuele Salti, and Luigi Di Stefano. “A combined
texture-shape descriptor for enhanced 3D feature matching.” Image
Processing (ICIP), 2011 18th IEEE International Conference on. IEEE,
2011.

[7] Rusu, Radu Bogdan, and Steve Cousins. “3d is here: Point cloud
library (pcl).” Robotics and Automation (ICRA), 2011 IEEE Inter-
national Conference on. IEEE, 2011.

[8] Chang, Chih-Chung, and Chih-Jen Lin. ”LIBSVM: A library for
support vector machines.” ACM Transactions on Intelligent Systems
and Technology (TIST) 2, no. 3, 2011.

[9] Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. ”A practical
guide to support vector classification.” 2003.

[10] Fan, Rong-En, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. ”LIBLINEAR: A library for large linear classification.”
The Journal of Machine Learning Research, 9, 2008.

