Summary

We propose a system that generates motion capture-based
animation for an arbitrary input rig. Our system applies a
k-means clustering algorithm to classify the joints, then uses
linear regression on the clusters to output an appropriate
animation sequence for each joint in the input test rig.

Dataset

We have limited the scope of this project to train and test on
walk cycle animations.

BVH file format. the BVH file format holds a skeleton, which
is defined by a joint hierarchy.

Walk cycle: each joint has an associated set of time-varying
transformations, which define the walk cycle.

Data Preprocessing
Normalise animation frames

egogept Hoop
oooo anoo

We normalise all data to 30 fps by omitting extraneous
frames of animation from higher-rate samples.

=0

Rig splitting

Our system is designed to works on varying rigs, so the
number of joints and their placement will vary between
different samples. To handle this, we “explode” each rig into
individual joints and train over joints rather than rigs..

Features

Input Features

Absolute position: (x, y, z) coordinates in world space.

Relative distance to parent: (x, y, z) coordinates defining the
offset to the parent.

Hierarchy depth: the joint’s depth from the root.

Number of children: the number of child nodes for a given

joint.

Target Features

We generate a sequence defining the movement of a joint
over time. This output is a series of translations and
rotations, each associated with a particular t.

Translation: a 3 x T matrix, where T is the total number of
animation frames in our training data.

Rotation: a 3 x T matrix, with [X, y, z] values corresponding
to the Euler rotation about each axis. We take this
rotation data and rotate the position of the training joint
to generate a 3 x T matrix of rotated positions.

Generating Motion Capture
Animation for Arbitrary Rigs

Final Algorithm

Cluster-based Linear Regression

Theta for x translation Theta for x rotation

30
2 100
2
15

theta value
theta value

time time

Theta for y translation Theta for y rotation

-] 80
e 5 W
15 60
10 50

theta value
theta value

time time
Theta for z translation Theta for z rotation

theta value

The most effective method was a combination of the
previous approaches. We used linear regression on each
cluster to generate a set of thetas for each class of joint. The
linear regression uses the input position of the joint in order
to output the set of time-varying translations and rotations.

These graphs show the thetas of each cluster. The left
column consists of the x, y, and z translations of each joint
while the right column consists of the x, y, and z euler
rotations.

Regressing over all joints generated essentially flat thetas,
as the movements of each class of joint were different
enough to cancel each other out. However, regressing over
each cluster, as demonstrated in the graphs above,
generates much more complex and useful thetas, accurately
representing the motion of that joint.

Initial Methods

Evaluation

We evaluated our methods using cross-validation, training
on 80% of our dataset and testing on the remaining 20%.
Distance between curves was calculated using the following
metric:

w 2D O
Linear Regression

Theta without clustering

theta value

Our first attempt was a linear regression over the joints. This
was not very effective, as the sample data consists of a wide
variety of very different joints, with very different animation
sequences.

K-means Clustering

Joint Clusters Joint Clusters
5r
» .
4 o P &
&€ * %%
3 00 Q o
2t ~
F € »
s ¥ & .
At } v
: & m ® |
3t @
A4+ 4
sLo 8 ® . e S 5
4 3 2 1 0 1 2 3 4 TR e W
X 2 :

The sample data holds many joints of different types, which
lends itself naturally to a clustering algorithm. Joints are
clustered based on the set of input features described
above. A test joint is then assigned to a cluster, and the
output animation is the average of the animation curves of all
training points in the cluster.



