
1

Blind Audio Source Separation Pipeline and
Algorithm Evaluation
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Abstract—This report outlines the various methods and experiments employed by its authors in their search for algorithmic
solutions for Blind Audio Source Separation. In the context of music, advancing BSS would lead to improvements in music
information retrieval, computer music composition, spatial audio, and audio engineering. An understanding and evaluation
on the advantage and disadvantage of different BSS algorithms will be beneficial for further usage of these BSS algorithm in
different context. This report discusses three Blind Audio Source Separation Algorithms: GMM, NMF, and ICA, and evaluates
their performance based on human perception of audio signals.

Index Terms— Audio Signal Processing, Blind Source Separation, Bark Coefficient Analysis, Non-negative Matrix Factorization,
Gaussian Mixture Model, Critical Band Smoothing
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1 PROJECT BACKGROUND

Blind Source Separation (BSS) is the separation of a set
of source signals from a set of mixed signals, without
the aid of information (or with very little information)
about the source signals or the mixing process. One way
of categorizing these algorithms is dividing them into
the approach in time domain and frequency domain. An
example of time domain approach is the Independent
Component Analysis which works with input data that
contains both positive and negative values. On the other
hand, algorithms such as Non-negative Matrix Factoriza-
tion works in the frequency domain where the input data
is the magnitude of the spectrogram which can only be
positive. Although BSS is an active research area where
new techniques are continuously being developed, there
is little literature studying the characteristics and the
differences between different BSS algorithms and hav-
ing an objective way of measuring the performance of
the BSS algorithm in the context of human perception.
Thus, it would be interesting to study the differences of
BSS algorithms and compare them by evaluating their
separation results. In this report, we studied three major
BSS algorithms: Gaussian Mixture Model (GMM), Non-
negative Matrix Factorization (NMF), and Independent
Component Analysis (ICA) and examine their perfor-
mance along with a perceptually relevant criteria for
measuring the error, thus enabling regression on the
parameters of our model.

2 PIPELINE

With the goal of comparing the performance of each
algorithm used in this paper in a convenient fashion, we
designed a pipeline structure as shown in Fig 1. Perfor-
mance of BSS supervised and unsupervised algorithms
for both under-determined and determined systems, was
compared using this process. Using this structure, we’ve

Fig. 1. Pipeline for Performing Algorithm Evaluation

implemented a system that automatically generates mix-
ings and feeds the mixings into different algorithms to
evaluate and compare their performance.

3 NMF
Source separation can be viewed as a matrix factor-
ization problem, where the source mixture is modeled
as a matrix containing it’s spectrogram representation.
Spectrograms are commonly used to visualize the time
varyingspectral density of audio, and other time domain
signals [1].Audio signals can therefore be fully repre-
sented by a matrix with rows, columns, and element
values corresponding to the horizontal axis t (represent-
ing time), the vertical axis f (representing frequency),
and the intensity or color of each point in the image
(indicating the amplitude of a particular frequency at
a particular time) of a spectrogram respectively. The
spectrogram of a signal x(t) can be estimated by com-
puting the squared magnitude of the short-time fourier
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transform (STFT) of the signal x(t), and likewise, x(t) can
be recovered from the spectrogram through the inverse
short-time fourier transform (ISTFT) after processing the
signal in spectral domain [2].

3.1 Modeling Source Separation as an NMF
Adopting this view, it follows that source separation
could be achieved by factorizing spectrogram data
as a mixture of prototypical spectra. While there are
many commonly practiced matrix factorization tech-
niques such as Singular Value Decomposition (SVD),
Eigenvalue Decomposition, QR Decomposition (QR),
Lower Upper Decomposition (LU). NMF is a matrix
factorization that assumes everything is non-negative,
giving this technique an advantage when processing
magnitude spectrograms. As an added advantage non-
negativity avoids destructive interference, guaranteeing
that estimated sources must cumulatively add during
resynthesis. In general NMF decomposes a matrix as a
product of two or more matrices as follows [3]

1) V 2 RF⇥T
+ original non-negative data

2) W 2 RF⇥K
+ matrix of basis vectors, dictionary

elements
3) H 2 RK⇥T

+ matrix of activations, weights, or gains
In the form:

⇥
V

⇤
⇡

⇥
W

⇤ ⇥
H

⇤

Typically K < F < T and K is chosen such that
FK + KT ⌧ FT , hence reducing dimensionality [4].
In the context of source separation spectrogram data is
modeled as V . The columns of V are approximated as
a weighted sum (or mixture) of basis vectors W rep-
resenting prototypical spectra and H representing time
onsets or envelopes. NMF is underlaid by a well-defined
statistical model of superimposed gaussian components
and is equivalent to maximum likelihood estimation of
variance parameters. NMF can accommodate regulariza-
tion constraints on the factors through Bayesian priors.
In particular, inverse-gamma and gamma Markov chain
priors. Estimation can be carried out using a generalized
expectation-maximization. This can also be solved as a
minimization of D where D is a measure of divergence.
In the literature, factorization is usually framed as an
optimization problem min

W,H�0
D(V |WH) [4] Commonly

solved using Euclidean or the generalized Kullback-
Leibler (KL) divergence. Defined as

dKL(x|y) = x log
x

y
� x+ y giving

min
W,H�0

X

f,t

Vft log
Vft

(WH)ft
� Vft + (WH)ft

The former is convex in W and H separately, but
is not convex in both simultaneously. NMF does not
always give an intuitive decomposition, however
explicitly controlling the sparseness and smoothness
of the representation leads to representations that are

Fig. 2. A closer look at Non-Negative Matrix Factorization

parts-based and match the intuitive features of the data
[5]. A deeper intuition is needed for how regularization
techniques relate to the performance of these algorithms
on audio data.

Euclidean and KL divergence are both derived from a
greater class of �-divergence algorithms, while it should
be noted that the derivative of d�(x|y) with regard to
y is continuous in �, KL divergence and the Euclidean
distance are defined as (� = 1) and (� = 2) respec-
tively. This is noteworthy since factorizations obtained
with � > 0 will rely more heavily on the largest
data values and less precision is to be expected in the
estimation of the low-power components. This makes
KL-NMF especially suitable for the decomposition of
audio spectra, which typically exhibit exponential power
decrease along frequency f and also usually comprise
low-power transient components such as note attacks
together with higher power components such as tonal
parts of sustained notes [6]. Majorization-minimization
(MM) can be performed using block coordinate descent,
where H is optimize for a fixed W , then W is optimize
for a fixed H , this is then repeated until convergence.
Since solving a closed form solution is intractable, this is
solved using Jensen’s inequality, introducing the weightsP

k �ijk = 1 which gives D(V |WH)


X

f,t

(�Vft

X

k

�ftklog
Vft

�ftk
+

X

k

(WfkHkt))

Choosing �ftk to be WfkH
`
ktP

k Wfk(H)`kt
as suggested in [7] MM

updates can be derived, where majorization is achieved
by calculating �ftk and minimization is achieved by

minimize
W,H�0

�
X

f,t

Vft

X

k

�ftklogWfkHkt +
X

k

WfkHkt

As mentioned earlier, the MM estimation is equivalent
to a generalized EM estimation with the added bene-
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fit of accommodating regularization constraints on the
factors through Markov chain priors. This is intuitive
since the EM algorithm is a special case of MM, where
the minorizing function is the expected conditional log
likelihood. This approach stems from the fact that only
Vft is observed, but the full model involves unobserved
variables k. EM is used to fit parameters that maximize
the likelihood of the data, maximizing over p(k|t) and
p(f |k) gives EM updates where the E-step involves
calculating

P (k|f, t) = P (k|t)P (f |k)P
k P (k|t)P (f |k))

and an M-Step maximizing
X

f,t

Vft

X

k

P (k|f, t)logP (k|t)P (f |k)

Unfortunately the number of parameters that need to
be estimated is FK + KT , in such a high dimensional
setting it is useful to impose additional structure. This
can be done using priors and regularization. Priors can
encode structural assumptions, like sparsity. Commonly
the posterior distribution is calculated using the poste-
rior mode (MAP). Another way is to impose structure
is through regularization, by adding another term to the
objective function

minimize
W,H�0

D(V ||WH) + �⌦(H)

where ⌦ encodes the desired structure, and � controls the
strength [7]. As discussed earlier, sparsity and smooth-
ness are good choices for ⌦(H), these structures are
useful when encoding the transient features of common
audio sources. In addition, an interesting area of future
work could be the inclusion of GMM derived structure
through clustering. The beginnings of this research are
discussed further in this report.

3.2 Seperating Sources

In the current research NMF is used to estimate W and
H which are in turn used to derive masking filters Msas
seen in the signal flow in Fig 2. Here audio source
mixtures are first represented as spectrograms by a STFT
algorithm, then factorized into W and H in order to
derive masking filters used to extract estimated sources
X̂ where X̂ = Ms � V and � is the Hadamard product
(an element-wise multiplication of the matrices). These
estimates are then synthesized into time domain signals
via a ISTFT algorithm, the original phase components
\V are added back into the estimates, and passed down
to the next stage of the pipeline for evaluation. Un-
supervised, partially supervised, and fully supervised
algorithms were evaluated, using this method NMF’s
separation and source estimation performance where
compared to ICA and GMM algorithms against the
performance criteria outline later in this report.

Fig. 3. Decomposing Spectrograms

4 GMM

N sources are separated from a mixed signal by fitting
a Gaussian Mixture Model (GMM) with N components
on the signal’s magnitude spectrogram. Each bin in the
original spectrogram is assigned to one of N GMM
components. Spectrograms containing the bins assigned
to each GMM component are inverted to produce esti-
mations of the source signals. The spectrogram of the
mixed signal was generated using a short-time Fourier
transform (STFT). The STFT was computed with a 2048
sample kaiser window with a beta value of 18, a hop
size of 64 samples, and zero-padding by a factor of
2. These parameters were chosen to minimize spectral
leakage while providing extremely high resolution in
both the time and frequency domain. The top most
graph in Fig 4 shows the spectrogram of a mixed signal,
where the magnitude is in decibel scale. All data points
with a magnitude less than -40db were discarded. The
threshold value of -40db was chosen experimentally as
the value that most effectively disambiguated between
silence and acoustic events.

Fig. 4. GMM Source Separation Process
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4.1 Clustering

After thresholding data based on magnitude, the mag-
nitude feature was discarded from the data used to fit
the GMM. Fitting a GMM on data without magnitude
consistently outperformed the GMM fit on data with
magnitude included. This is not surprising since the time
and frequency of a bin are much more indicative of
source signal membership than magnitude. The GMM
was fit to the data with an equal number of components
as source signals to be estimated. Each component was
fit with a full covariance (non-diagonal) matrix inde-
pendently of the other components. A full covariance
matrix reflects the highly unpredictable nature of the
covariance of time and frequency in audio sources. The
independence of each components covariance matrix
reflects tendency for some audio events to be highly
concentrated in time or frequency, while other audio
events are more dispersed in time and frequency. Initial
values for the components were selected using the k-
means algorithm.

4.2 Source Estimation

After fitting the GMM to the data, each bin in the
positive frequency portion of the original mixed signal
spectrogram underwent hard assignment to the com-
ponent that maximized the posterior probability. The
middle graph in Fig 4 shows the result of this assignment
after fitting a GMM using both frequency and time
information. A new spectrogram was generated for each
component consisting only of the bins in the original
spectrogram that were assigned to the component. Fi-
nally, in the bottom of Fig 4 shows the spectrograms of
two estimated sources - the first having predominately
low, narrow frequency content, and the second having
predominately high, disperse frequency content. Each of
these spectrograms was inverted using an inverse short-
time Fourier transform to obtain estimates of the original
source signals. The evaluation result of this algorithm is
discussed in the end of this paper.

5 PERFORMANCE EVALUATION

In order to fully understand and compare the per-
formance of each algorithm used in this paper, it is
important to have an objective way of measuring the
estimated source result against its true source. Several
methods commonly used to evaluate audio quality such
as PEAQ [8] are particular tailored to measure audio
codec performance and are in consequence not ideal
for evaluating audio source separation algorithms. One
set of metrics used to measure the performance in the
literature of BSS that particular suited for studying the
characteristics of different BSS algorithms are Source
to Distortion Ratio (SDR), Source to Interference Ratio
(SIR), and Sources to Artifact Ratio (SAR) [9]. These ratio
are derived based on decomposing the estimated source
into true source part plus error term corresponding to

the interference of other sources and the error term of
artifact introduced by the algorithm, and then calculate
the relative energy of these component in time domain.
This evaluation technique hence has the advantage of
providing information on how well a particular BSS
algorithm suppresses the interference of other sources or
the artifact introduced while performing the separation.
However, the relationship between human perception on
the quality of separated results to these metrics is not
well established. Accordingly, we proposed an improved
performance evaluation approach which relates human
perception on audio signals to the metrics based on
modifying the method proposed in [9].

5.1 Critical Band Smoothing

Since human hearing is only sensitive to spectral features
wider in frequency than a critical bandwidth, we can
model how human perceive audio signal by blurring
spectral features smaller than a critical bandwidth in
the spectrum using critical band smoothing procedure
[10]. In this paper, the equivalent rectangular bandwidth
(ERB) scale [11] is used for determining the critical
band. The ERB and frequency in kHz are related by
the equations bE = 21.4log10(4.37f + 1.0) and f =

(10
bE
21.4 �1.0)/4.37. With this relationship in hand, we can

smooth the spectral features of a certain audio signal by
replacing the magnitude of each frequency bin with its
average magnitude across one critical bandwidth using
the calculation below:

P (!,�) =

f(b(!)+ �
2 )X

'=f(b(!)� �
2 )

|H('))|2 (1)

where we are using a � = 0.5 in this paper. The effect of
critical band smoothing can be understood through the
graph in Fig 5.

Fig. 5. Critical Band Smoothed Spectrum Example

5.2 Proposed Performance Criteria

In this article, a new performance criteria is designed
to study the performance among different BSS algo-
rithms in the context of human spectral perception.
For the evaluation of the BSS algorithms in this paper,
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the estimated source is decomposed into three parts as
discussed previously in [9], but instead of measuring the
energy ratio in time domain, we examine the energy
ratio in critical band smoothed frequency domain to
include the objectiveness of human hearing perception.
For instance, the critical band smoothed spectrum of the
estimated source is decomposed as Sestimate = Strue +
Sinterfere + Sartifact where, Sestimate is the critical band
smoothed spectrum of the estimated source, Strue is the
projection of the critical band smoothed spectrum of
the estimated source onto the critical band smoothed
spectrum of the targeted true source, Sinterfer is the
summation of all the projections of the critical band
smoothed spectrum of the estimated source onto all
other true sources (excluding the targeted true source),
and finally Sartifact is calculated as Sestimate - (Strue +
Sinterfer) which stands for additional error or artifact
introduced by the BSS algorithm. The three metrics SDR,
SIR, and SAR in this paper is defined as follows:

SDR = 10log10(
kStruek2

kSinterfere + Sartifact)k2
) (2)

SIR = 10log10(
kStruek2

kSinterferek2
) (3)

SAR = 10log10(
kStrue + Sinterferek2

kSartifactk2
) (4)

where Strue, Sinterfere, and Sartifact are the critical
band smoothed spectrums as stated previously. It is
critical to note that SAR stands for Sources to Artifact
Ratio and in the numerator: kStrue + Sinterferk2 is the
total energy of all the sources present in the estimated
source. This arrangement makes SAR independent of
SIR and make a robust and accurate evaluation on the
artifact caused by the BSS algorithm. An evaluation
test on an estimated source generated by a true source
adding more and more white noise using the new estab-
lished performance measurement as a demonstration is
presented in Fig 6.

Fig. 6. Performance Evaluation Demonstration

6 RESULT & CONCLUSION

Through the algorithm evaluation pipeline, we have suc-
cessfully generated the SDR, SIR, and SAR comparison

Fig. 7. Fast ICA, ICA, GMM, Supervised NMF, Unsuper-
vised NMF, and Partially-Supervised NMF

among GMM, NMF, and ICA by testing on the same
mixing generated using two sources: a Bass and a Drum
audio clip. As mentioned in the performance evaluation
section, SDR measures the general accuracy of how well
the estimated source is compared to its targeted true
source. SIR on the other hand, measures how well the
algorithm prevent other sources from interfering the
estimated source while separating. Finally, SAR evaluate
how well the algorithm is at avoiding artifact. As is clear
in Fig 7, fitting GMMs with spectrograms of mixed audio
signals yielded the highest SIR measured, but yielded
the lowest SDR except for unsupervised non-negative
matrix factorization. These results are likely due to the
sharp division in the frequency domain between source
signal estimations created by hard assignment of spectral
data points to GMM components. The results of GMM in
Fig 4 show a typical cutoff in the frequency domain. The
abrupt cutoff in frequency prevents source signals in dif-
ferent frequency bands from interfering with the source
being estimated. This suppression leads to GMMs high
SIR value. However, a negative consequence of the sharp
frequency cutoff is that signal content on the wrong
side of the cutoff is excluded from the source estimation
entirely. This suppression leads to a low SDR value. On
the contrary, Fast ICA, ICA and NMF have similar SDR,
SAR performance which are the highest among all the
algorithm we’ve evaluated. There is however, a major
difference among ICA and NMF, where ICA performs
well in a determined system when there is sufficient
mixing examples, while NMF performs well in an under-
determined system but requires a supervised learning
process on the true sources examples. Furthermore, we
also evaluate the performance on the unsupervised and
partially supervised version of NMF. As we can see
from the result in Fig 7, the performance of NMF drops
according to the degree it is unsupervised.



6

REFERENCES

[1] Boualem Boashash. Time Frequency Analysis. Else-
vier Science, 2003.

[2] E. Jacobsen and R. Lyons. The sliding dft. Signal

Processing Magazine, IEEE, 20(2):74–80, Mar 2003.
[3] P. Smaragdis and J.C. Brown. Non-negative matrix

factorization for polyphonic music transcription. In
IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics (WASPAA), pages 177–180,
October 2003.

[4] Cédric Févotte, Nancy Bertin, and Jean-Louis Dur-
rieu. Nonnegative matrix factorization with the
itakura-saito divergence: With application to music
analysis. Neural Comput., 21(3):793–830, March 2009.

[5] Patrik O. Hoyer. Non-negative matrix factorization
with sparseness constraints. CoRR, cs.LG/0408058,
2004.

[6] Cédric Févotte and Jérôme Idier. Algorithms for
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